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FINITELY REPEATED GAMES WITH FINITE AUTOMATA

ABRAHAM NEYMAN

In honor of R. J. Aumann’s 65th hirthday

The paper studies the implications of bounding the complexity of the strategies players may
select, on the set of equilibrium payoffs in repeated games. The complexity of a strategy is
measured by the size of the minimal automation that can implement it.

A finite automation has a finite number of states and an initial state. It prescribes the action to
be taken as a function of the current state and a transition function changing the state of the
automaton as a function of its current state and the present actions of the other players. The size
of an automaton is its number of states.

The main results imply in particular that in two person repeated games, the set of equilibrium
payoffs of a sequence of such games, G(n),n =1, 2, ..., converges as n goes to infinity to the
individual rational and feasible payoffs of the one shot game, whenever the bound on one of the
two automata sizes is polynomial or subexponential in n and both, the length of the game and the
bounds of the automata sizes are at least n.

A specia case of such result justifies cooperation in the finitely repeated prisoner’s dilemma,
without departure from strict utility maximization or complete information, but under the as-
sumption that there are bounds (possibly very large) to the complexity of the strategies that the
players may use.

1. Introduction. A fundamental message of the theory of repeated gamesisthat the
cooperative outcomes of multi person games, provided those games are repeated over and
over, are consistent with the usual ‘‘selfish’’ utility-maximizing behavior assumed in
economic theory. For example, in the prisoner’s dilemma of Figure 1, the only rational
outcome in noncooperative play of the one shot gameis (1, 1). But ininfinitely repeated
play, the players can achieve the cooperative outcome (3, 3) in equilibrium.

Indeed, the Folk theorem and several other results (Aumann 1959, 1960, 1981, Aumann
and Shapley 1994, Fudenberg and Maskin 1986, Rubinstein 1994, and Sorin 1986, 1990,
1992) assert that cooperative outcomes of the one-shot game are equilibria (and aso
perfect equilibria) of the infinite repetition of that game. Cooperation is also rationalized
by Nash equilibria or even perfect equilibria in some classes of finitely repeated games
(Benoit and Krishna 1985, 1987 and Gossner 1995). However, there are games, including
the prisoner’s dilemma, that are not in this class; indeed, in any finite repetition of the
prisoner’s dilemma, all equilibria (and all correlated equilibria and all communication
equilibria) lead to the noncooperative outcome at each stage. This contrasts with the
common observation in the experiments involving finite repetitions of the prisoner’s di-
lemma, that players do not always choose the single-period dominant actions, but instead
achieve some mode of cooperation.

The present paper justifies cooperation in the finitely repeated prisoner’s dilemma, as
well as in other finitely repeated games, without departure from the strict utility maxi-
mization, but under the assumption that there are bounds (possibly very large) to the
complexity of the strategies that players may use.

2. The modd.

2.1. Strategic gamesand equilibria. Let G be an n-person game, G = (N; (A')ien;
(rien), where N = {1, 2, ..., n} isthe set of players, A' is a finite set of actions for
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Unfriendly  Friendly

Unfriendly 1,1 4,0
Friendly 0,4 3,3
FIGURE 1.
Playeri,i=1,...,n,andr' : Al x --- X A"— R is the payoff function of Player i.

The set Al is called also the set of pure strategies of Player i. The Cartesian product
XienAl = A X A2 X --- X A"isdenoted by Aandr : A— RN denotes the vector valued
function whose ith component isr', i.e, r(a) = (r*(a), ..., r"(a)). We write (N, A,
r) for short for (N; (A")ien; (r')ien). For any finite set B we denote by A(B) the set of
al probability distributions on B. For any player i and any n-person game G, we denote
by v'(G) hisindividual rational payoff in the mixed extension of the game G, i.e., v'(G)
=minmax r'(a’, o ') where the max ranges over al pure strategies of Player i, and the
min ranges over all N\ {i} -tuples of mixed strategies of the other players, and r' denotes
also the payoff to Player i in the mixed extension of the game. We denote by u'(G) the
individual rational payoff of Player i in pure strategies, i.e., u'(G) = minmaxri(a',a™")
where the max ranges over al pure strategies of Player i, and the min ranges over all
N\ {i} -tuples of pure strategies of the other players. Obvioudy u'(G) = v'(G). An
equilibrium of a strategic game (N, A, r) is an N-tuple of (mixed) strategieso = (¢')ien,
o' € A(A"), such that for every i € N and any strategy of Playeri, 7' € Al, ri(r',07")
=r1'(c', ¢7"). If o isan equilibrium, the vector payoff r(c) is called an equilibrium
payoff. For any game G in strategic form we denote by E(G) the set of al equilibrium
payoffs in the game G.

2.2. The finitely repeated game G'. Given an n-person game, G = (N; (A")ien;
(r)ien), We define a new game in strategic form G™ = (N; (Z'(T))ien; (rH)ien) Which
models asequence of T playsof G, called stages. After each stage, each player isinformed
of what the others did at the previous stage, and he remembers what he himself did and
what he knew at previous stages. Thus, the information available to each player before
choosing his action at stage t is all past actions of the players in previous stages of the
game. Formally, let H,,t =1, ..., T, be the Cartesian product of A by itself t — 1 times,
i.e, H, = A™!, with the common set theoretic identification A° = { &}, and let H
= U, H,. A pure strategy o' of Player i in G™ isafunction o' : H - A'. Obviously, H
isadigoint union of H, t = 1, ..., T and therefore one often defines o'} : H; — A asthe
restriction of ¢' to H,. We denote the set of all pure strategies of Playeri inG by X'(T).
The set of pure strategies of Player i in the infinitely repeated game G* is denoted X'.

Any N-tupleo = (¢, ...,0") € X;en Z'(T) of pure strategiesin G induces a play
w(o) = (wi(o), ..., wr(c)) defined by induction: w1(o) = (Jl_(@), )]
= o(Q) and wi(o) = o(wi(o), . .., we1(c)) or in other words wi (o) = o'(J), and
w't(S(;t) =0'(wi(0), ..., wa(0)) = o(wi(o), ..., wa(o)).

r(wi(o)) + --- + r(wr(9))
T .

rt(o) =

Two strategies o' and 7' of Player i in G are equivalent if for every N\ {i} -tuple of
pure strategies o ' = (01)jengiy, wi(o', 07) = w (7', o) forevery 1 = t = T. The
equivalence classes of pure strategies are called reduced strategies.
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2.3. Finiteautomata. A finite automaton for Player i isafour-tuple(M', q', f', g'),
where M' isafiniteset, € M', f': M' > A", andg': M' Xx A" = M'. The set M' isthe
set of possible states of the automaton, ' is the initial state, f'(q) is the action taken by
the automaton when in state g, and g' describes the transition of the automaton from state
to state; if at state q the other players choose the action tuple a', then the automaton’s
next stateisg'(q, a™'). The size of the finite automaton is the number of states.

A finite automaton for Player i can be viewed as a prescription for Player i to choose
his actions in the various stages of the repeated game. The action to be taken at stage 1
isf'(g'). The action in stage 2 isf'(g'(qg', a;')) where a;' is the actions taken by the
other playersin stage 1. More generally, if we define inductively,

g'(g, by, ..., b) =g'(g'(a, by, ..., b)), by),

whereb; € A™', the action prescribed by the automaton for Player i at stagetisf'(g'(q’,
ai',...,a 1)) wherea;’, 1 =j <t,isthe N\ {i} -tuple of actionsat stagej. Therefore,
any automaton o = (M', ', f', g') of Player i induces a strategy o', in G” that is given
by

ob(an,...,a) =f(g'(d,ar',...,ac)).

Note also that an automaton « of Player i induces also a strategy o', of Player i in the
infinitely repeated game G*. A strategy o' of Player i in G* (in G") is implemented by
the automaton o of Player i if o' is equivaent to ol,, i.e., if for every o 7' € X2/ (o~
€ XjuZI(T)), w(o', 07" = w(oh, o).

A finite sequence of actions (ay, . .., a) and a pure strategy o' of Player i in G* are
compatible, if forevery 1 = s=t,0'(a, ..., a_,) = a.. The set of all sequences of
actions of length n that are compatible with o' is denoted A"(¢'). Given a strategy o' of
Player i in G*, any sequence of actions (a, . . ., &), induces a strategy (¢'|ay, ..., &)
in G*, by

(c'ag, ...,a)(by, ..., b)) =c'(ay,...,a, by, ..., b).

Section 3 shows that the number of different reduced strategies that are induced by a
given pure strategy o' of Player i in G* and al o'-compatible sequences of actions equals
the size of the smallest automaton that implements o.

2.4. Finitely repeated gameswith finiteautomata. Given agame G in strategicform
and positive integersmy, . .., m,, we define ' (T, my) to be all pure strategiesin X'(T)
that are induced by an automaton of size m. Note that if a strategy is induced by an
automaton of size m; and m/ = m then it is also induced by an automaton of size m; .
Thegame G(my, ..., m,) isthe strategic game (N; (Z'(T, m))ien; 1) Where ry here
is the restriction of our earlier payoff function r to X;cn Z'(T, my).

3. Automata and strategic complexity. We define in this section two measures of
complexity of strategies in the repeated game. One complexity measure is the size of the
smallest automaton that implements o, and the other one isthe number of different reduced
strategies that are induced by a given pure strategy o' of Player i in G* and all o'-
compatible sequences of actions. It is proved that the two complexity measures coincide.
For an analog result for ‘‘exact automata’ see Kalai (1990).

More precisely we define the first measure of complexity of apure strategy o € X' (or
o € X(T)), compy(o), as the smallest size of an automaton that implements o'. The
second measure of complexity (of a pure strategy), comp,(c'), is defined as the cardi-
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nality of the set of equivalence classes of {(c'|a, ..., a,)|n € Ny and (a, ..., a,)
€ A"(¢")}, where N, is the set of nonnegative integers.

The measure of complexity comp, (o) is defined on X', the strategies in the infinitely
repeated game. It has a natural extension to a measure of complexity for strategiesin the
finitely repeated game G™; let o = (o)1, € X'(T), and define

comp,(c) = min{comp,(7) 7€ X' andOt, 1 =t=T,0,= 7} .

ProrosiTioON 1. For every pure strategy o' € X', or in X'(T),

comp,(c') = comp,(c').

Proor. Leto' € X' beimplemented by the automaton (M', g', ', g'). We will show
first that comp,(c') = | M'|, where | M'| is the number of elementsintheset M'. Let a

=(ay,...,a,)andb = (b, ..., b) betwo plays that are compatible with o', and such
that (¢'|a) is not equivalent to (o'|b). Then thereisaplay ¢ = (c,, ..., C,) that is
compatible with both (¢'|a) and (o'|b) and such that (¢'|a)(cy, ..., ) + (o'|b)(ca,
..., Cy). Therefore,
g'(g,ar’,...,a.,ci'y ..., cp) = g'(q, by, ..., b, et Ll cpY).

As

g'(dar’, .., an el 6pY) = g9 A L an ) er L Gp)
and

g'(q', by, ..., b e, ... c) =d'(g' (g, by, ..., b)) e L Y,
we deduce that

g'(q',ar’,...,a;") #d'(q', by, ..., b").

Thus, comp,(c') = | M'| which implies that

comp,(c') = comp,(c').
Let M be the set of equivalence classes of {(s'|a) : n € Npand a € A"(¢')}, and we
identify here a strategy with its equivalence class. Let q' = o', and for n € Ny and a
=(as,...,a) € A'(d"),

fi(c'ay,...,an) = (c'|ag, ..., &),
and
g((c'las,...,a),a’)=(c'as, ..., &, ((¢'las, ..., &), a")).

Then, o' isimplemented by (M, ¢', f', g') and thus we conclude that

comp, (¢') = comp,(c'),

which completes the proof of the proposition. O
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4. Automata and play complexity. We define in this section a complexity measure
for each player on plays (and on sets of plays) of the repeated game, and derive various
inequalities regarding the complexity of a play. The definitions and results in this section
are of independent interest and do serve as a good introduction to the more involved
complexity counting in the proof of our main result. Let G = (N, A, r) be a strategic
game. A play of the repeated gameis an element of theset U,_; A' U A”. A finite (infinite)
play is an element of U;_; A' (A*). A strategy o' of Player i in G* is compatible with
the infinite play (a,, - --), if for every positive integer t, the finite play (ai, ..., &) is
compatible with o'. Let w be a play. We define the i th player complexity of the play w,
comp'(w), as the smallest complexity of a strategy o' of Player i which is compatible
with w, i.e,

comp'(w) = inf{comp(c): ¢ € ='is compatible with w} .
LemvA 1. Leta=(ay,...,a) € A Then

comp'(a) = t.

ProoF. The strategy o' of Player i which isimplemented by the automaton (M', ',
fl,g)ywhereM' ={1,...,t},q =1,f : M = Alisgivenby f'(s) = ai, and g'(s, )
= min(s + 1, t) iscompatiblewitha = (a, ..., a). O

If n and m are two positive integers, a = (&, ..., a,) € A"and b = (by, ..., by)
€ A™, then we denote by a + b the element of A" ™ that is defined by

at+b=(a;,...,a, by, ..., bn).
LEmvMA 2. Leta=(a;,...,a) € Atandb = (b, ..., bs) € As. Then

comp'(a + b) = max(comp'(a), comp'(b)).

Proor. Let o' be a strategy of Player i which is compatible with the play (ay, . . .,
a, by, ..., Dbs). Then o' is compatible with a and therefore comp'(a + b) = comp'(a).
On the other hand, (¢'| a4, . . ., &) iscompatible with b and as comp(c') = comp(c'| ay,

.., &), comp'(a+ b) = comp'(b). O
For a € A" and a positive integer d we define d Oa by inductionon d: 1 Ja = a and

(d+ 1) Da=d0a+ a.

LemvAa 3. Leta=(a,...,a) € A'witha, =a,=--- = a_,andal_, # al. Then

comp'(a) = t.

Proor. By Lemmal comp'(a) = t. Let o' be a strategy which is compatible with
a. Then the strategies o, (o]a), ..., (olay, ..., a_;) aret different strategies. for 0
=s<g=t-1,

(c'|sOa)((t—q— 1) Oa) =al #al = (c¢'|qg0a)((t — q— 1) Oa,),

where 7(0 Oa,) = 7, and (7|0 Oa;) = 7. Thus the strategies (¢'|s0a;),0 = s=t —
1, are t different strategies, and therefore comp'(a) = t. O

For a € A", b € A¥ and a positive integer s with min(n, k) = s — 1, we define a
=,bif a = b forevery t <s.

The next lemma provides a lower bound for the complexity of a play which repeats d
timesaplay (of theformt Oa + b) and in which the actions of Player i initiate adeviation
from the periodic play.
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LemmA 4. Leta= (a;,...,a) € Aandb = (b, ..., b,) € A"witha} = b}, t
=0andd = 1. Assume that w = (wi, ..., ws) € ASwith (d — 1)(tk + n) + tk + 1
<s=(d+ 1)(tk + n) and

dO(tOa+b)=¢w and ((d+1)0(tOa+ b))l =+ wi.
Then

comp' (w) = d(t + 1).

Proor. Let o' beastrategy which is compatible with w. Consider the set of strategies
{(c'ljO(tOa+b)+10a):0=j<dand0 = | = t}, i.e, the set of strategies
{(c' w1, -, Wjem+iw)} (and wherefor j =1 = Owemean by (¢'|j O(a+ b) + 1 0
a)orby (o'|wi, ..., W) thestrategy o' If (j, 1) # (j’,1") then either | # 1’ and
without loss of generality | < |’, and then (¢'|j O(t Oa + b) + | Oa)((t — ") Oa)
=a)# b= (c|j  O(tOa+b)+1"0a)((t —1") Oa) or | = 1" and without loss of
generaity j < j’, and then

(ol jO(tOa+ b) + 1 0a)(w@eny+ikrr - - -» ws1) = (d O(t Oa + b))
and
(O'| j, D(t Da + b) + I Da)(u)j'(tk+n)+|k+1, ey ws_l) = w;

Aswt # (d O(t Oa + b))L, the cardinality of this set of strategiesisd(t + 1). Therefore
comp'(w) = d(t+1). O

Lemma 4 is of interest also for the special case when k = 1. Elaboration on such
complexity counting (where k = 1) appears later in the proof of the main result.

Remark 1. The conclusion of Lemma 4 does not hold when replacing the assumption
al #+ b! with the assumption a, = b;.

Indeed, assume that there are two players, i = 1, 2, and for each Player i, {0, 1} C A'.
Consider the action pairsa = (0, 0) and b = (0, 1). For any d € N, the play w = (ws,
o, ws)withs=d(t+ 1)+ landw =dO(t Oa + b) + (1, 0) satisfiesd O(t Ja +
b) =cwand (d + 1) O(t Oa + b)i # ws while

comp’(dO(tTJa+b) +(1,0))=d+ 1.

The complexity of the strategy of Player 1, which plays 0 as long as the number of past
action 1 isat most d and plays 1 otherwise, equalsd + 1.

The next lemma provides a complexity lower bound for a play which departs from a
fully coordinated periodic play after completing a fixed given number of cycles. If f:
A'— A?isal — 1functionanda = (ay, ..., a,) isaplay witha? = f(af) for every 1
=t = nwe cal the play a a coordinated play.

LEMMA 5. Leta = (a, ..., a,) beacoordinated play, b € Awith b* = ai, and d
€ N. Then
comp’(dda+ b)=(d—1)n+ 1.

Proor. Assumethat m = nisthe period of (d + 1) Oa. If m < n, thereisaplay c
=(Cy, ..., Cn), apositiveinteger d € N and aplay e, such that d Ja = e + d Oc, b?*
#+ ci,and (d — 1)m= (d — 1)n. It follows from Lemma 2 that we can assume without
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loss of generality that m = nisthe period of (d + 1) Ja. Let w = (w1, ..., Want1)
= d 0a + b. Let o be a strategy of Player 1 which is compatible with w. If comp'(o)
< (d—1)n + 1, there are two positive integerssandtwithl = s<t=(d-1)n+ 1
such that

(0|w1, ceey, Weg) = (0|W1, cey Wie1)

where for s = 1 the left-hand side of the above equality is o. Asd Oa is a coordinated
play, it follows by induction on k that for every 0 = k = dn + 1 — t, wiy = wiy. In
particular, settingk = dn + 1 — t, wl g1t = wis1 = b. Asb® = al it follows that t
— sisnot amultiple of n. On the other hand, it implies that

(l) (Wé, LR wé—*—n—l) = (w31 ey Wt1+n—1)

As(wi, ..., wd) isn-periodic we may assume without loss of generality that (1) holds
fors=nandt < s+ n. Asd Oa is n-periodic, if s > 1, wl, = wini1 = wWhna
= wi_, and therefore (1) holds for s — 1 and t — 1 and thus without loss of generality
we may assumethat s = 1in (1), and thusd Oa has a period of sizet —s<n. O

The lower bound in the previous lemma can be replaced with (d — 1) On + 2 and this
is the best one possible. Indeed, if a = (0, 0) + (n — 1) 0(1, 1) then comp'(d Oa + (1,
IH)=(d-1)n+ 2

The next lemma provides a complexity lower bound for a play which departs from a
periodic play a after completing d cycles.

LEMMA 6. Leta= (a,...,a) beaplayandd a positiveinteger. Let B' C Al bea
nonempty subset of the actions of Player i. Assume that k : B' = N is such that for every
b' € B' there is s = s(b') < t — k(b') with as,; = --- = agkpy and b’ = al,,
# alikpiy+1. Then comp'(a) = Zace k(a'), and if w = (wy, . .., ws) isa play with td
<s=t(d+1),(d+ 1) 0a=,wand((d+ 1) Oa)l # withen

comp'(w) =d Y k(a').

aleB!

Proor. Assume that o € X' is compatible with w. For any b', ¢' € B', any two
positive integers m, n with s(b') = m < s(b') + k(b'), s(c') = n < s(c') + k(c'), and
O=qgq=p<dif(b',m,p)=+(c,n,q),then
(2) (olwi, .oy Wmipt) # (0w, - ooy Woiq)-

Indeed, if b' # ¢' then (m # n and)
(olwi, oy wmep)1 =B = ¢ = (o|wi, ..., Whrq)s-
If b' =c'and m< n,
(o|lwiy ey W) ((S(B') + k(b') — n) Da,) = b’
and
(olwi, ooy wnea) ((S(D') + k(b') — ) Oan) = asw) rkbn+1-

As ais(b')+k(b')+1 + b, (2) follows.
Ifb=c,andm=nand0=p<qg<d,
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(U|Wl| sy Wm+pt)(wm+pt+l' Ty Ws—t(q—p)—l) = ((d + 1) Da)ls

and
(olwy ooy Wnrgq) (Wimigrra =+ Ws-1) = we.

AS (Wmipts1” * s Wst(qp)-1) = (Wmiquea - = ws-1) and ((d + 1) Oa)s #+ ws, (2) follows.
Finally, observe that the number of triples (b', m, p) with b' € B', s(b') = m < s(b')
+ k(b')and 0 = g < d equalsd =, k(a'). O

A set of plays Q is conforming for Player i if for al (a;,...,a,b;, ---)and (a, ...,
&, Cy, ---)inQ,

b} = ci.

A pure strategy o' of Player i is conformable to Q if it is compatible with any w € Q.
Notice that aset of plays Q is conforming for Player i if and only if thereisa pure strategy
of Player i that is conformable to Q. The ith player complexity of a set of plays Q that
is conforming for Player i is defined as the smallest complexity of astrategy o' of Player
i that is conformableto Q, i.e,,

comp'(Q) = inf{comp'(c): o € X'is conformable to Q}.

In what follows, we discuss the complexity of some special class of sets of plays. We
hope that these remarks will help the reader in following the corresponding parts in the
proofs.

Consider an arbitrary 2-player game G with two actions for each player labeled 0 and
1. Let E be a set of sequences of zeroes and ones of length k and such that for every
=(e,...,e) €EEandl=i<k,(e,...,6,0,...,0)€E.

Assumethat for every € € E, y(¢) isaplay of length k;, > kwith y#(¢) = O for every
1=t=k,and y?(e) = ¢ for every 1 = t = k. We associate with every injective (1
— 1) function g from E to the set of coordinated plays of length k, a set Q of plays of
the repeated game, and we comment on its complexity.

Fix positiveintegers| > k; + k; and d = 2. What is the complexity of Player 1 of the
Set

Q= {v(e) + dO((I = k) O(0, 0) + B(e))|e € E}.

A simple upper bound for comp*(Q) is |E|(k, + |) where | E| isthe number of elements
of E. If ef, = 1 for every e € E, then, comp*(Q) = |E|l. Indeed, let M = E x {1, 2,
..., |} bethe set of states of an automaton of Player 1, and the initia state of the
automaton is (e*, p)), wherep < | — k; — k; and ¢ = (0, ..., 0) € E. The action
function f: M — A'isdefined by f(e,i) =0if 1l =i =1 -k and f(e, i) = Blui(e)
if | — k, <i =I.Finaly thetransition function g : M X A%2— M aobeys: g((¢, i), f (e i))
equals (e, i + 1) if 1 =i < | and it equals (¢, 1) if i = |. This ensures that once the
automaton is at state (¢, 1) it follows the loop (I — k;) 0(0, 0) + B(e) aslong as Player
2 follows the loop. The strategy of Player 1 that is induced by the automaton (M, (e*,
p), f, g) is compatible with any play in Q whenever g((e*, p), yi(e), ..., v&(e€))
= (¢, 1) for every e € E. There are many transition functions with the above property.
If, in addition, Bi,(¢) = (1, 1) for every e € E, the complexity of Player 1 of the set of
plays Q equals| |E]|.
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5. Statementsof themain results. The main results of the present paper addressthe
asymptotic behavior of the sets of equilibrium payoffs, E(G"(my, m,)), of the two player
games G"(m,, my) as T, m, and m, go to <. All convergence of sets is with respect to
the Hausdorff topology. The main result will follow from theorems which provide con-
ditionson alist of variables:

afeasible payoff x € co(r(A)),

a positive constant ¢ > 0,

the number of repetitions T, and

the bounds of the automata sizes, m; and nm,,
that guarantee the existence of an equilibrium payoff y of the game G™(m,, m,) that is e-
close to x. One of the conditions will ensure that a payoff in a sufficiently small neigh-
borhood of x is generated by strategies that are implemented by automata of sizes which
are less than m, and m,. This condition is stated by means of the inequalitiesm = my
where my is sufficiently large. Another condition requires the bounds of one or both
automata sizes to be subexponential in the number of repetitions, i.e., a condition that
asserts that (log m )/ T is sufficiently small. Theorems 1 and 2 require a subexponentia
(as a function of T) bound of min(m,, m,) while Theorems 3 and the main theorem
reguire a subexponential bound of max (my, m,) (asafunction of min(T, min(my, my,))).

ThHeorem 1. Let G = ({1, 2}, A, r) be a two person game in strategic form. Then
for every ¢ > 0 sufficiently small, there are positive integers T, and my, such that if T
= T,, and x € co(r(A)) with x* > u*(G), and x*> > u?(G), and

my = min(m,, my) = exp(e°T),
then thereisy € E(G™(my, my)) with
ly' — X'| < e.

Special cases of the above theorem have been stated in previous publications. Neyman
(1985) statesthat in the case of thefinitely repeated prisoner’ sdilemmaG, for any positive
integer k, thereis T, such that if T = T, and TY* = min(my, m,) = max(my, my) = Tk,
then there is amixed strategy equilibrium of GT(my, m,) in which the payoff is 1/k-close
to the *‘ cooperative’’ payoff of G. Papadimitriou and Y annakakis (1994) state the specia
case of Theorem 1 for games with rational payoffs and payoff vectors x in r (A). They
also state aresult for a subset of co(r (A)) with the additional assumption that the bounds
on both automata are subexponential in the number of repetitions. The sketched proof in
Papadimitriou and Y annakakis (1994) is, however, incomplete; it is tailored for the spe-
cific prisoner’s dilemma depicted in the introduction, and assumes that m; = m,. The
detailed proofs appearing in Papadimitriou and Y annakakis (1995, 1996) also have gaps,
and we do not see how this line of proof can be validated for general integer payoff
matrices that are ordinally equivalent to the prisoner’s dilemma. For details, see 86.3.
Other related results include Megiddo and Wigderson (1986) and Zemel (1989).

The conclusion of Theorem 1 fails if we replace in the assumptions of the theorem the
strict inequality x* > u*(G) by the weak inequality x* = u*(G). For example, in the
game

0,41,3
1,111,0
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the only equilibrium payoff in G™(my, my) withm, = 27 — 1is(1, 1). Indeed, if (o, 7)
is an equilibrium of GT(my, m,), ri(o, 7) = 1, and therefore for every 1 =t = T,
ri(o, 7) = 1 with probability (with respect to the probability on plays induced by the
mixed strategy pair (o, 7)) L. If r3(o, 7) > 1,1et S, 1 = S= T, be the largest positive
integer t = T such that with positive probability r (w,(o, 7)) = (1, 3). It follows that for
S<t=T,r*wd(o, 7)) = 1 Therefore, if 7' isthe strategy of Player 2 which coincides
with the strategy 7 up to stage S — 1, and for t = Splays Left, r3(o, ') > r3(o, 7).
AsX?(T,2" — 1) = (T, «), the result follows. However, the theorem remains intact
if we replace the assumption x* > u'(G) with the weak inequality x* = u*(G), and in
addition we assume that there is a vector payoff y € co(r(A)) with y' > u'(G), i
=1,2

The next theorem is obviously a generalization of Theorem 1. We do state both theo-
rems because we believe that Theorem 1 is of independent interest and its proof avoids a
few complications that arise in the proof of Theorem 2. Also afirst reading of the proof
of Theorem 1 will help in the reading of the proof of Theorem 2. For simplicity, the
statements of the next two theorems are nonsymmetric with respect to the two players.

THEOREM 2. Let G = ({1, 2}, A, r) be a two person game in strategic form. Then
for every ¢ > 0 sufficiently small, there are positive integers T, and my, such that if T
= Toand x € co(r(A)) with x* > v*(G), and x? > u?(G), and

My = m, = min(m,, exp(s°T)),
thereisy € E(G"(my, m,)) with

ly' — X'| < e.

THeorem 3. Let G = ({1, 2}, A, r) be a two person game in strategic form. Then
for every ¢ > 0 sufficiently small, there are positive integers m, and T, such that if T
= Ty and xisa point in co(r (A)) withx' = v'(G), and

M=m=m=exp(eEmin(T, m)),
then thereisy € E(G™(my, m,)) with
ly' — x'| <e.

The equilibrium strategies in Theorems 2 and 3 are robust in the following sense.
Assume that, in addition to the assumptions (on G, ¢, T, X, m; and m,) in each theorem,
there are action pairsa = (a*, a?) € Aand (a*, b?) € A, such that r?(a*, b?) > r?(at,
c?) whenever b? = ¢2, andr?(a) > v%(G). Then thereis astrategy pair (o, 7) in G"(Imy,
m,), with

[ri(o,7) — X'| <&

which is an equilibrium of H"(m,, m,) for every two person game H with payoffs that
are within ¢ of the payoffsin G.

We are ready now to state our main theorem, which relates the equilibrium payoffs of
G"(my, m,) to the equilibrium payoffs of the undiscounted infinitely repeated game
G% . Recall that the Folk Theorem asserts that

E(G*) = {x € co(r(A))|x* = v}(G) and X2 = v3(G)} .
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MaIN THEOREM. Let G = ({1, 2}, A, r) be a two person game in strategic form,
and let (T, my(T), mx(T))7-1 be a sequence of triples of positive integers with min,_; »
m(T) >~ asT— «, and

im log maxi—, m(T)
e MiN(My(T), my(T), T)

Then,

lim E(GT(mu(T), my(T))) = E(GX).

The inequality m, = exp(e®m,) in Theorem 3, could probably be replaced with an
aternative lower bound, as afunction of T, on m,, provided that we also replace the weak
inequality x* = v*(G) with the strict inequality x* > v*(G).

CongEcTUurRE 1. Let G = ({1, 2}, A, r) beatwo person gamein strategic form. Then
for every e > 0 sufficiently small, there is a positive integer T, such that if T = T, and x
isa pointin co(r(A)) with x' > v'(G), and

eT = m, = min(m,, exp(e3T)),
then thereisy € E(G"(my, m,)) with
ly' — X'| < e.

The next theorem is straightforward and very easy. We state it as a contrast to the
previous results. It shows that the subexponential bounds on the sizes of the automata as
afunction of the number of repetitionsis essential to obtain equilibrium payoffsthat differ
from those of the finitely repeated game G”.

THEOREM 4. For every game G in strategic form there exists a constant ¢ such that
if m = exp(cT) Oi then
E(G"(my,...,m)) =E(G").

6. Préiminaries.

6.1. Notation. Let G = (N; A; r) bean N-player gamein strategic form. We denote
by K(G) or K, for short, twice the largest absolute value of a payoff in the game G. Thus
r'(a) — r'(b) = K(G) for every aand b in A. We denote by R the vector valued function
defined on all finite plays as the average payoff, i.e., fora = (a;, ..., a,) € A",

r@) + --- +r(a)
- .

R(a) = R((al, ey an)) =

The integer part of areal number x is denoted [X], i.e., [X] isthe largest integer that is
less than or equal to x. The length n of aplay c = (¢, ..., c,) € A"isdenoted |c|. The
number of elementsin aset X is denoted | X|. Given two sets of real numbers X and Y,
X+Y={x+ylxeX yeY}.

There are severa constructions and functions that are used repeatedly in our proofs.
Therefore, we introduce here severa of these as general notations. Given two positive
integers my, and |, we define the nonnegative integer k(my, |) as the smallest nonnegative
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integer k such that 24 > m, — |. The set Q(my, |) is defined as a subset Q of
{0, 1} K™ satisfying:

Qo {(ers. v, 0):6€{0,}} (L....,1)¢Q
QI = [(m, — 1)/I].

Note that the definition of k = k(my, 1) implies that 2" = (m, — |) < 2", and thus
2%t < [(m, — 1)/1] < 2. Therefore, such a subset Q of {0, 1} “ exists. Note also that
forevery (eq, ..., &) € Q, =K ¢ < k. Inthe constructed equilibrium, | Q| isthe number
of possible proposed plays, 2k is the duration of the communication phase, and | is the
length of the cycle following the communication phase. Therole of thefirst two properties
of Q isto simplify the description of the proposed play.

In each of the constructed equilibria two actions of each player arelabeled 0 and 1. To
each ¢ € Q we will associate two plays of length 2k: the communication play 6(e) and
the verification play 6*(¢).

6.2 Theidea of the proofs of the main results.

(a) for the Prisoner’s Dilemmaand m, < T.

We outline the proof in afew specia cases where G is the Prisoner’s Dilemma given
in the introduction. We consider first two instances in which the payoff vector isx = (3,
3). We exhibit a pure strategy equilibrium (o, 7) of GT(m,, m,) where2 = m, = m,
< T, resulting in a payoff of 3 for each player in each stage. Label the Friendly action
by 0, and the Unfriendly action by 1. For any play w = (w4, ..., wr) let ¥ and 7 be
the strategies that follow the play w as long as the other player follows it, and switch to
punishing forever as soon as a deviation from the proposed play is observed. Notice that
w is the outcome of the strategy pair (¢, 7¢). Now let w = T 0(0, 0). The only play
with average payoff greater than 3 to Player 2 that is compatible with the strategy o“ is
(T—-121)0(0,0) + (0, 1). By Lemma 3 such a play requires a strategy with complexity
at least T. Obvioudly, o“ € £*(2) C X*(m,) and 7¢ € £?(m,) and thus (¢*, 7¢) isan
equilibrium of GT(m,, m,) with outcome w.

Now fix 6 with 0 < 6§ < 1. Let T be sufficiently large, m; = m,, and my < 6T. We
now construct a play w with average payoff within e of the friendly payoff (3, 3) such
that the pure strategy pair (o*, 7*) is an equilibrium of G™(m,, m,). Choose an integer
d sufficiently large that R(d 0O0(0, 0) + (1, 0) + (0, 1)) iswithin /2 of (3, 3) = r (0,
0) and that [(T — 1)/(d + 2)](d + 1) > éT. Let w bethed + 2 periodic play of GT
where the last string of d + 2 actionsisd 00(0, 0) + (1, 0) + (0O, 1). For T sufficiently
large R(w) is within € of x. The strategy pair, ¢ of Player 1 and 7+ of Player 2, isan
equilibrium of G™(m,, my). Indeed, the complexity of each of these strategies is no more
thand + 3 = my = m,, implying that c* € Z*(T, m,) and 7 € Z3(T, my). No other
play which is compatible with o results in a higher payoff to Player 2. And the only play
6 with R*(#) > R*(w) that is compatible with 7¢ is (w1, ..., wr_1, (1, 1)), which by
Lemma 4 has complexity for Player 1 at least [(T — 1)/(d + 2)](d + 1) > éT. Thus
any strategy of Player 1 that does better than o« isnot in £*(T, m,), and so the strategy
pair (¢*, 7¢) is an equilibrium of GT(my, m,).

Theroleof theaction pair (0, 1) at the end of the cycletogether with the synchronization
of the play so that wr = (0, 1) isto ensure that Player 2 has no desire to deviate. Therole
of the action pair (1, 0) following each d plays of the action pair (0, 0) is to ensure that
any strategy of Player 1 that follows the play w up to close to the end and then deviates
is sufficiently complex, as illustrated in Lemma 4 and Remark 1. For example, the play
w =10000(40(0,0) + (0, 1)) isnot an equilibrium play of the 5,000 repeated prisoners
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dilemmafor m; = 1003. Consider the strategy of Player 1 implemented by an automaton
with 1003 states: one absorbing state in which the Unfriendly action is played and 1002
states in which the Friendly action is taken. The automaton starts in state one and until
state 999 moves to the next state whenever the other player plays the unfriendly action
and stays in its present state if the other player plays the friendly action. For states 1000
to 1002 the automaton moves to the next state whatever the other player does. Against
any strategy of Player 2 consistent with w this strategy of Player 1 follows the play w up
to stage 4998 and plays the unfriendly action in the last 2 stages of the game, which is
better for Player 1 than w.

(b) for general gamesand m, < T/4.

Now condder an arbitrary game G and suppose that m, < T/4. For any vector payoff x
€ cor(A) withx' > u'(G) we will construct a d-periodic play w with a corresponding payoff
of approximatdly x. Further, the play w is such that the strategy 7+ is abest reply to o among
al grategies of Player 2, and o is a best reply to 7+ among al srategiesin (T, my,).

We start by constructing thecyclec = d, Oa; + by + d, Oa, + b, + d; Oas + bs + d,
Da, withr?(a,) = r?(a,) = r?(as) = r?(a,) = max,ca r?(a), d, sufficiently large, R(c)
is approximately x, and max?., d;/|c| > . Two of theterms b, are the empty string. The
b, following the longest string d, Oa;, 1 = i = 3, is an action pair with b! + al. The
play w is the periodic play of c such that the play of the last |c| stagesisc. The cycle,
and thus also the play ends with a string d, Oa,. Since r?(a,) = r?(a,) = r?(as) this
impliesthat 7« isabest reply to o“. Indeed, except for one stage in the cycle the payoffs
of Player 2 increase through the cycle. The value of d, is sufficiently large that the con-
tribution of this stage is negligible and that any one stage gain from deviation before the
last d, stagesis offset by the loss in the remaining stages. The role of the action pairsb;,
1 =i = 3, isto ensure that the complexity of a strategy of Player 1 that deviates from
the proposed play after completing k cycles c, is at least k max;_;_; d;. As any play ¢
with R*(8) > R*(w) that is compatible with 7+, coincides with w in all but the few very
last stages we conclude that indeed r*(c“, 7¢) = r(o, 7¥) for any o € Z*(T, my).

So far we have described instances of cases in which we were able to describe a pure
strategy equilibrium of GT(my, my,). For sufficiently large m, ='(T, m) = Z'(T), and
so al equilibrium payoffs of GT(my, m,) are equilibrium payoffs of GT. For pure strategy
equilibria significantly smaller bounds on m suffice: if m; and m, are both at least T, any
pure strategy equilibrium payoff of the repeated prisoner’s dilemma results in repeated
play of the unfriendly actions.

(c) form = T/4.

When m = T/4 we will construct mixed strategy equilibria. We now describe the
outline of the proof in casethat my > T/4andm, > T.

For any subset of plays Q C AT, let 7° be the mixed strategy of Player 2 that is a
mixture of the pure strategies 7, w € Q, each equally likely. Recall that a set of plays
Q isconforming for Player 1 if the actions of Player 1 at each stage are functions of past
actions, i.e., for any two playsw, # € Qandany 1 =t = T, §{ = w{ whenever (w, ...,
wi—1) = (61, ..., 01). A pure strategy o of Player 1 is conformable to Q if and only if
for every w € Q the outcome of the strategy pair (o, 7¢) isw. For any set of plays Q that
is conforming to Player 1, there is a pure strategy of Player 1 that is conformable to Q.

The equilibrium strategy of Player 2 is a mixed strategy of the form 72 where Q isa
set of plays that is conforming for Player 1. The equilibrium strategy of Player 1, o*, is
amixture of strategies that are conformable to Q. The play w that is selected by 72 via
the realization 7¢ is called the proposed play. We will construct the set Q so that the
number of playsin Q isat least 2 * and less than 2* (where the value k depends on the
parameters my and T). Therefore we rename the set of the possible proposed plays and
identify each play with asequencee = (¢4, . . ., €) Of zerosand ones. We use the notation
w(e) = (wi(€), ..., wr(e)) for the proposed play associated with e, and 7 for 7).
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Theaction of Player 1 at stage 1 = t = kin the proposed playsw(e) € Q isindependent
of e and the sequence of actions of Player 2 in the first k stages of the game identifiesthe
proposed play w(e). Thisimpliesthat Q is conforming for Player 1.

We interpret the actions of Player 2 in the first k stages of the game as a signa that
Player 2 sendsto Player 1. The signal specifies one of finitely many plays of the repeated
game. Each player follows the proposed play as long as the other player follows it, and
switches to punishing the other player as soon as he detects a deviation from the proposed
play. The strategy of Player 2 detects immediately any deviation by Player 1 from the
proposed play.

Each one of the proposed plays enters a cycle of action pairs with associated payoff
approximately x. Thus, in any one of the proposed plays, Player 1 has no incentive to
deviate prior to the very last stages of the finitely repeated game. The set of possible
proposed plays is such that Player 1 is unable to follow each one of the proposed plays
and deviate in even one of them at the very late stages of the finitely repeated game.

There are severa properties that need to be satisfied in order to construct such an
equilibrium. The resulting expected payoff needs to be approximately the fixed payoff
vector x. Thiswill be achieved by each one of the proposed plays separately, by playing
in most stages a cycle of action pairs where the average payoff over the cycle is approx-
imately x. (When x = r(a), a € A, most of the action pairs in the cycle will be a.)

As Player 2 specifies the proposed play, the payoff to Player 2 needs to be independent
of the proposed play. Thiswill be accomplished by Player 2 sending his signal during the
first k stages of the repeated game, using two actions, say 0 and 1. The next k stages are
used to balance the number of times that each one of these two actions of Player 2 appears
in the first 2k stages, i.e., ensuring that each one of them appears exactly k times. Player
1 plays a fixed action, say O during the first 2k stages. We refer to the first 2k stages as
the communication phase. Following the communication phase the play will enter one of
finitely many possible cycles where the number of times each action pair appears in the
different cycles is constant and moreover, the leftovers needed to complete the full play
are independent of the proposed play.

Many simplifications of the ideas result by assuming x = r(a) € r(A) rather than x
€ cor(A). Label theaction pair a= (a*, a?) by (0, 0) and the action pair of the punishing
strategies (1, 1). Following the communication phase (of length 2k) in which Player 2
transmits a message ¢ € Q to Player 1 (during the first k stages), the play enters a cycle
c(e€), which is a coordinated play. The length of the coordinated play, |c(¢)|, isinde-
pendent of € and |c(e)| > 2k. Most of the action pairs in the coordinated play c(e¢) are
(0, 0). However, the last 2k stages of the coordinated play c(e) depend on e. Thispartis
called the verification play (and is denoted 6*(¢)).

The set of messages Q and the corresponding verification play are such that an auto-
maton of Player 1 which wishes to follow each one of the proposed cycles for at least
two rounds can not use the same states in different cycles (corresponding to different
messages) and moreover, it needs | c| different states for each cycle. We thus fill up his
capacity by generating enough messages so that m; — | Q| | c| is sufficiently small (no
more than |c|) preventing him from selecting even just one proposed play and being able
to deviate in the last stage in that play while repeating the cycle in all other proposed
plays. One needs further to choose the set of proposed plays so that Player 1 is unable to
increase his own payoff by neglecting a subset of messages and using the freed upon
states for sufficient gain in the late stages of the game. We label the automaton states used
in playing the coordinated cycle c(e¢) by (¢, 1), ..., (e |c|).

Player 1 also has to process the message sent during the communication phase, and for
that it might seem that an additional number of about | Q| statesis needed. However, the
constructed equilibrium is such that he uses the very same states used to follow the
different cycles.
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An additional problem arises. If a state of the automaton of Player 1 is used both in
one of the cycles as well as in the communication phase, it may have to tolerate the two
actions 0 and 1 of Player 2. Therefore, there are deviations by Player 2 from the set of
plays Q that are left unpunished. Such deviations can start during the communication
phase, e.g., Player 2 can choose the action 0 at a stage during the communication phase
that dictatesto Player 2 the action 1. Or, they can start after completing the communi cation
phase during a play of a cycle, by taking the action 1 instead of O at a stage in which the
state of the automaton of Player 1 tolerates both actions 0 and 1 of Player 2. Therefore,
if Player 2 knows an exact stage in one of the cycles in which the state of the automaton
of Player 1 tolerates the two actions 0 and 1, he may take advantage over it in future
stages of the game. Moreover, the availability of undetectable deviations by Player 2 may
ater his indifference among the various playsin Q. Thus the mixed strategy of Player 1
conceals the exact states that tolerate both actions, 0 and 1. But how can the play enter
now the coordinated play; after all, Player 2 hasto be informed of the time Player 1 enters
the start of the verification play. Thisis accomplished by ensuring that the communication
phase ends with an action pair (0, 1) in a state of the automaton which is reused in the
coordinated cycle for a (0, 0) action pair, and the transition function of the automaton of
Player 1 will change the automaton state to (e, 1). The above discussion indicates one
role of a mixed strategy of Player 1 in our constructed equilibrium.

Additional caution is needed here. Player 1 needs aso to verify that Player 2 does
indeed balance his two actions 0 and 1 during the first 2k stages of the repeated game.
Otherwise, as Player 2 may prefer the action pair (0, 0) to the action pair (0, 1) he may
choose to play the action O rather than 1 in some stagest withk + 1 =t = 2k. Such a
deviation by Player 2 has a negligible effect on the total payoff but may not leave Player
2 indifferent to the different proposed plays. The states of the automaton of Player 1 that
areused instagest = k + 1, ..., 2k are also used at later stages of the repeated game
(during the cycle play) for the action pair (0, 0). How can Player 1 verify that Player 2
does indeed balance his two actions in the first 2k stages of the repeated game? The
automaton transition function is such that if Player 2 takes action 0 when in areused state
(e, ]), the next state of the automaton is (¢, j + 1) as expected in the course of the cycle
play. The different pure strategies in the support of the equilibrium (mixed) strategy of
Player 1 react differently in the reused states to the action 1 of Player 2. Player 2 is
uncertain about the pure strategy realization, and therefore if Player 2 deviates from the
proposed play at one of the stagest = k + 1, ..., 2k he will not know when to start with
the verification play. The above discussion indicates a second role of a mixed strategy of
Player 1 in our constructed equilibrium.

Player 1 may have an incentive to accept only a subset of the proposed plays. This can
happen if the number of the proposed plays is large and by neglecting o(T) proposed plays
he is able to follow most other proposed plays up to stage T and deviate at stage T. Thisis
excluded by our congtruction, by requiring Player 1 to report periodically the proposed play.

6.3. An alternative idea of a proof. Papadimitriou and Y annakakis (1995, 1996) pro-
posed a different line of proof for games with integer payoffs and vector payoffsx inr(A).
Consider the prisoner’s dilemma depicted in the following figure:

C D
cl7,710,8
D|[8,0]2,2

Denote by g = (g*, g?) the vector payoff function of this game. We describe in what
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follows the ‘‘equilibrium’ strategies and equilibrium play (proposed in Papadimitriou
and Yannakakis 1995, 1996) of the T-stage repetition of this game where Player 1 is
restricted to automata of size m, (>T?) and Player 2 is restricted to automata of size m,
= m, with a payoff vector that is closeto g(C, C) = (7, 7).

Our discussed communication phase is replaced in Papadimitriou and Y annakakis with
two phases: the business card exchange phase and the fixup phase. The first d stages are
called (by Papadimitriou and Y annakakis) the business card exchange phase. Player 2
transmits his business card, y € {C, D} ¢, (by playing at stage 1 = t = d the action y;,)
to Player 1, who plays the (same pure) action C through this phase. All business cards
of Player 2 are equally likely.

The quotesin the following paragraph are from Papadimitriou and Y annakakis (1996).
The second phase, called (by Papadimitriou and Y annakakis) the fixup phase, ‘*‘ has the
purpose of equalizing the value of the different business cards; it consists of one random
step by both players, followed by a sequence of deterministic coordinated moves by the
two players that balance the payoffs.”” The coordinated moves in their proof are (C, C)
and (D, D). (*'In the first step the two players choose randomly, but possibly with dif-
ferent probabilities, among two (distinct) strategies, which we shall still call CandD. . .
Then they go on to play for L more steps using only two strategy pairs, which we call
(A,B),(A’,B");. . . Theonly requirement isthat the quantities A = g2(A, B) — g?(A’,
B’) and A’ = g*(A, B) — g*(A’, B") are both nonzero.”” Thus we may assume that A
=A"=Cand B =B’ = D.) ““The number of AB (i.e,, (C, C)) steps they play, is
determined by the outcome of the random step: If Player 1 played C and Player 2 also C,
then it is x;; if the combination was C, D then x,; if D, C, then x;; and if D, D,
then x,."”

Thus, the fixup phase last for L + 1 stages and is parametrized by a vector X = (X,

.., X4) (which depends on past actions) with max x = L.
Let

A= gz(ci C) - gz(Dv D)
In the first stage of the fixup phase, Player 1 (Player 2) plays C with probability p = p(x)
(9 = q(x)). In the next L stages of the fixup phase the players play a deterministic
sequence of coordinated action pairs. If the random action pair in the first stage of the
fixup phaseis (C, C) they play x, O(C, C) + (L — x;) O(D, D); if the action pair was
(C, D) then x, O(C, C) + (L — x) O(D, D); if the action pair was (D, C) then X,
0(C, C) + (L — x3) (D, D); and if the action pair was (D, D) then x, O(C, C) + (L
— X4) O(D, D). Recall that x; are integers.
Player 2 isindifferent about histwo possible actions in the first stage of the fixup phase

only if

pxA + pg*(C, C) + (1 - p)xA + (1 - p)g*(D, C)
equals

pxA + pg*(C, D) + (1 — p)xA + (1 - p)g*(D, D).
Setting

a(x) = (% — %s)A + g*D, D) — g*(D,C) and
B(X) = (% — %)A + g*(C, C) — g*(C, D),

Player 2 isindifferent only if
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a(x)
X)=—F"——"—.
PO =500 + 609
Let F(x) denote the sum of the payoffs to player 2 in the fixup phase, and G(x) = F(x)
— Lg?(D, D). We write next the expression for G(x) and G(y) for two possible values
of thevectorsX = (Xg, ..., X)) andy = (Y, ..., Va).

_ axA | BI%A | a()@(C,C) . A)GAD, C)
COV= 20 + 800 Ta) + 600 T al®) + ) T a(x) + B

and

a)yid _BY)YsA a(y)g®(C,C)  B(y)g*(D,C)
a(y) + B(y) aly) +B(y)  a(y) + B(Y) a(y) + B(y) -

Let B = g?(C, C) + g3(D, D) — g?(C, D) — g?(D, C). Notice that for every integer
vector X, a(X) + B(x) = B(mod A) and that a(x) = a(y) (mod A) and 5(x) = B(y) (mod
A). Therefore

G(y) =

NA
F(X) — F(y) = G(x) — G(y) = MA + B2
where N and M are integers. Therefore if the imbalance in the first phase of the game is
sand sB? is not a multiple of A, there are no integer values of the vectors x and y with

F(X) — F(y) =s.

6.4. Zero-sum games with finite automata. In this section we present results about
the value of 2-person 0-sum repeated games with finite automata. The first result follows
from the proof of the result of Ben-Porath (1993), and is used in our proof of Theorems
2 and 3. In dl that follows in this section we denote by G afixed 2-person 0-sum game,
and for a 2-person 0-sum game, H, we denote by Val (H) its minimax value.

THEOREM 5. Let 6 > 0. For every £ > 0 sufficiently small, if
exp(e?’my) = m, > 1,
then for every positive integer T,
Va (GT(my, my)) = Val (G) — &.

The next result asserts that if the bound on the sizes of the automata of Player 2 is
larger than an exponential of the size of the automata of Player 1, then Player 2 could
hold Player 1 down to his maxmin in pure strategies.

THEOREM 6. For every K > |A'|, myand ¢ > 0, there exist a positive integer T, and
a strategy 7 € A(Z?(m,)) where m, = K™, such that for every T = T,, and any
strategy o € T?(my),

Va(G'(my, my)) = ri(o, 7*) = max min r(a?, a?) + e.

aleAl a2eA?

Proor. The proof is given here for completeness; it is given also in Neyman (1997).
Without loss of generality we assume that G = ({1, 2}, A, r) isa2-player 0-sum game.
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The idea of the proof is as follows: there is a subset 7 C X2(my) with |F] = my|AY|™
such that for every strategy o € X*(my,) there is a strategy = € 7 such that for every
positive integer t, w?(o, 7) is a best reply of Player 2 to wi(o, 7) and therefore r (o,
7) = maxa €A mingz€A?r'(al, a?). Player 2 chooses at random a strategy from 7
and switches to another randomly chosen strategy from Jif it does not fit. The conditional
probability of success at each round is at least 1/(my| A*|™) and therefore the probability
of success in one of the first Cmy,|A*|™ rounds approaches 1 as C — «, and the result
follows. Formally, let b: A* = A? be a selection from the best reply correspondence of
Player 2. Construct the following mixed strategy of Player 2, 7*, which is implemented
with an automation with state space

M2={1,...,m} x{1,...,1}

where | = [K™/my]. The initial state of the automation of Player 2 is (1, 1). Let a :
M? — A* be a random function, each such function equally likely, i.e., for every 1 = i
=m,andevery 1 = j = I, a(i, j) is arandom element of A* each one equally likely,
and the various a(i, j) are independent. We define now the random action function of the
automation

f2(i,j) = b(a(i, j)).
The transition function of the automation, depends on arandom sequencek = ki, ..., k
each such sequence equally likely and the sequence isindependent of the function a. We

are ready now to define the transition function which depends on the functions b and a
and the random sequence k.

(i+1,j) ifi<mandc=a(,j),

N AL T ifi =mandc=a(,j),
o°((1.1). ) = (1,j+1) ifj<landc=a(,j),
(14,1) otherwise.

Let o be a pure strategy of Player 1 that isimplemented by an automaton of size m,. Let
a,, &, ... wherea, = (at, a?) be the random play induced by the strategy pair ¢ and 7*,
and let g, q5, . .. be the random sequence of states of the automation of Player i. Fix 1
=j =landlett = t; bethe random time of the first stage t with g7 = (1, j). Note that

. 1
Prob(af,s=a(s+ 1,j)00=s<m) = TAI[m

andifal,=a(s+1,j)0J0=s<m (andthusalso a2 = b(a(s+ 1,j)) J0 = s
< my) then either there are 0 = s < s’ < my with gi,s = Qi and then qim,
= Qtim+s s and therefore gi,m, € {Qi, ..., Givm1} OF [{Q, ..., Oiim2}| = My and
then qt.m, € {0, . . ., Qtim-1} - IN either case there exists 0 = s < m, such that the state
of the automation of Player 1 at staget + my, gi.m, coincides with its state in stage t
+ s. Therefore if k; = s + 1, the play will enter a cycle in which the payoff to Player 1
is a most maxaic a1 Mingze a2 r*(at, a?). Therefore the conditional probability, given the
history of play up to stage t; that the payoff to Player 1 in any future stage is at most
MaXaicat MiNgzeaz r(at, a%), and that t;,, = « is at least 1/(]A*|™m,). Otherwise, if
t., <o, foreveryt =t <t’ <t.:(af, g?) # (g, g?) and therefore t;,, = t; + m7.
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Therefore, if t, = «, for every staget > ImZ, the payoff to Player 1 at staget is at most
MaXaic a1 MiNLzea2 F(at, a?). The definition of | and the previous inequalitiesimply that

Prob(t, = %) =1 — (1 — 1/(m|AY™)) "1 >1 asm, — oo,

which completes the proof of the theorem. O
A positive resolution of the next conjecture would provide a positive answer to con-
jecture 1.

CoNJECTURE 2. For evary e > 0,
Va(G™(my, «))=>Va(G) asm,—xandm, = T.

The truth of the above conjecture implies that there is a function h: N — N with
limr.. h(T)/T = 0, and such that

(3) lim Va (G™(h(T), »)) = Va (G).

An interesting open problem is to find the order of magnitude of the smallest function h
obeying (3). Neyman and Okada (1996) show that if h: N— Nissuch that limy.. h(T)/
(T/log T) = O, then

limVva (G"(h(T), «)) = max min ri(a?, a?).

ale Al a2eA?

CongecTture 3. If h: N— Nissuch that lim..(T/log T)/h(T) = O, then

lim Val (GT(h(T), =)) = Va (G).

7. The proofs of the main theorems. Theorem 4 is straightforward, and is a result
of the following observation.

ProrosiTioN 2. Let G = (N; (A')ien; (r')ien), be an N-person game. Then any
pure strategy of Player i in G is implemented by an automation of Player i of size
SETIATE

Proor. LetM; ={@}, M, = (A7) Let o be a pure strategy of Player i in GT,
and let « = (M', @', f', g') be the automaton of Player i given by:

t=T

Mi = UMt, qi = @!
t=1

andforeveryhe M, 1=t =T,
fi(h)y =o(h’), g'(h,a’)=(h,a’),

where h’ is the unique history of length t that is consistent with both h and o. Then, ¢ is
implemented by the automaton «. O

ProorF oF THEOREM 1. Let G = ({1, 2}, A, r) be a 2-person game, x € co(r(A))
withx* > u'(G), and x? > u?(G), and £ > 0 sufficiently small. Without loss of generality
we assume that m, = m,. Assume that T, and my are sufficiently large and that the triple
(T, my, m,) satisfies the following inequalities:
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T=T,,
and
my=m = exp(e’T).

W.l.0.g. we assume that ¢ < 1. We will construct an equilibrium (o, 7) of GT(my, my)
with associated equilibrium payoffs (y?*, y?) satisfying |y' — x'| < e.

(A) Thecasem, < T/4.

For small values of m, (relative to the value of T), we will construct a pure strategy
equilibrium, and for larger values of m, the constructed equilibrium will be a mixed
strategy one.

For m; < T/4 we will define aplay w = (w1, ..., wr) of G" which is a periodic
sequence of elements of A with period d, and such that the pair of strategies, o of Player
1 and 7 of Player 2, that follow the play w aslong as the other player follows the play w
and triggers to punishing forever with a pure strategy as soon as a deviation was observed,
is an equilibrium of G"(my, m,).

We start with the construction of the play w. Recall that K is twice the largest absolute
value of a payoff in the game G, and assume that ¢ > 0 is sufficiently small with ¢
< min(1, K/4), and let x € co(r(A)) withx' > u'(G).

Without loss of generality we assume that x' > u'(G) + 2e. Otherwise, let y
€ co(r(A)) with y' > u'(G) and without loss of generality assume that y* — u*(G)
= y? — u?(G) and ¢ is sufficiently small so that ¢ < y' — U'(G), set a = 2¢/3(Yy"
—U'(G)), X=ay + (1 — a)x, and &’ = &/4. It follows that X' > u'(G) + 2¢’ and
|x' — X'| < 2¢/3 and therefore any point zwith |Z' — X'| < &’ satisfies |2 — x'| < «.
Let d be afixed positive integer with d > 3(K/g)?2.

There are three strategy pairs a;, a, and a; in A and three nonnegative numbers a4, a,
and as With 27, a; = 1 such that x = =%, a;r (g). Let a, € A be apoint that maximizes
the payoff to Player 2, i.e., r?(a,) = r?(a) for every a € A. Let d, be the smallest positive
integer so that d,(r?(a,) — u?(G)) > K. In particular (d, — 1)2e < K, i.e,d, < 1
+ K/2¢ and therefore d,K/d < €/6 + K/d. Setting d; = [a;(d — dy — 1)], d, = [ax(d
—d,—1)]adds=d—-d, — d, — dy — 1, we deduce that |=; di(r'(a) — x')|
= 2K and therefore

dir'(au) + dor'(@p) + dar'(8s) + dar'(as)

d X'| <el2 - K/d.

Without loss of generality we assume that r?(a;) = r?(a,) = r?(as) = r?(a,), andlet 1
= k = 3 be such that d, = max?_,d,. It follows that d, > 2d/7. Let b, € A be such that
bt + at. Define the periodic play w = (wy, ..., wy) with period d as follows. The play
in the last d stages consists of 5 strings. Four of the strings consist of d; plays of the
strategy pair . The fifth string consist of one play of by, and it follows the string di O
a.. Symbolically we could write the play of the last d stages as

(WT_d+1,...,wT):d1|]al+ - +deak+bk+ - +d4Da4

and therefore(wlv ey wd) = (wT—i+11 sy WTy Wr—ds1y - - -y U.)T_i) Wherel = T(mOd d)'
Therefore,

i dr'(a) + r'(bg _
d

x| < el2,

and therefore for sufficiently large values of T, eg., T = 2dK/e,
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E;r:]_ri (wt) _

Xi
T

< e.

(4)

Note that the average payoff to Player 1 in each cycleis at least u*(G) + ¢ and that
foranyae Aandany 1 =t = Twe havethatr'(a) — r*(w,) = K. Therefore, for every
t<T - dK/e, and every a € A?,

(5) ri(at, wf) + (T - tu(G) < Yr(ws).

s=t

Furthermore, the periodic play w is such that for every a? € A?andevery T — d, < t
= T, we have that r?(wi, a?) + SLu?(G) = 2Lr?(ws). As the sequence r?(a) is
nondecreasing, i.e, r3(a,) = r?(a,) = r?(as) = r?(a,) we deduce that for every t = T
— ds we have that r?(wi, a?) + SLU3(G) = r3(wi, a) + SZ%u?(G) + du?(G)
= 3L.r?(ws). Altogether we conclude that for every a®? € A?and every t = T,

(6) r’(wi,a®) + 3 u*(G) = 2 r#(ws).

s>t

We will show now that the pair of strategiesin G™(m,, m,), o of Player 1 and 7 of Player
2, that follow the play w as long as the other player follows the play w and trigger to
punishing forever with a pure strategy as soon asadeviation isobserved, isan equilibrium
of GT(my, m,). Note that such a strategy isin '(m) whenever d < my. Moreover, it
follows from (5) that if o’ € tissuchthatr (o, 7) <ri(c’, 7), then w(o’, 7) = w;
for every t < T — dK/e. Thus, the strategy ¢’ must deviate from the periodic play w,
after following the d-cycle for at least [ (T — dK/e — 1)/d] rounds. Therefore, the com-
plexity of o' isat least di (T — 2dK/g)/d > 2(T — 2dK/g)/7, which for a sufficiently
largevalueof Tyislarger than T/4, and thussuch astrategy o’ isnotin £ *(m,). Therefore,
for every o’ € Z(my),

ri(o,7) =ri(o’, 7).
It follows from (6) that for every 7’ in X2,
ré(o,7) =r3(o, 1').

Altogether we conclude that for sufficiently large values of my and To, (o, 7) is an
equilibrium of GT(m,, m,) with payoff vector y that satisfies |y' — X'| < e.

(B) Thecasem, = T/4.

Assumethat m, = T/4. Let x € co(r(A)). Then x is a convex combination of at most
three elements of r (A). We consider the following three cases, according to the minimal
number of elements of r (A) that contain in their convex hull the point x. (1) Thereisa
€ Awithx =r(a). (2) There are two different elements a,, and a, and positive numbers
M >0and ), > 0, suchthat Ay + N\, = 1 and =2, \r(a) = X. (3) There are three
different elements a;, a,, a; € A and positive numbers A; > 0, N\, > 0 and \z > 0, with
M+ N+ As=1andZE, Nr(a) = x. Case 3is partitioned into three subcases according
to the relative position of the entries a;, a,, and a; in the matrix.

(3.1) ai = aj = a3,

(3.2) ai = aj = a3,

(33) {ai, a3 a3} =3
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Proving the result for Case 3 is obviously sufficient to establish the theorem; any vector
payoff x € co(r(A)) could be approximated as the convex combination =2, \ir (&)
=X, With\; > 0, A, >0, A3 > 0,and \; + \, + \3 = 1, and a,, a,, a; are three different
elementsin A. However, theresult iseasier in case 1, so to help the reader grasp the ideas
of the genera proof, we first prove the resultsin case 1.

(B.1) subcase 1 withm, > T.

The following is a construction of an equilibrium for Case 1, i.e., x = r(a), and under
the assumptions m;, = m, and m, > T. We will construct an equilibrium point (o*, 7*)
of G™(my, m,) with associated equilibrium vector payoff (y*, y?) with |y' —ri(a)| < e.

We use the following notations here. The strategy b? of Player 2 in the (one shot) game
G isabest reply of Player 2 to the strategy a* of Player 1. The pure strategy a' is denoted
by 0. Let D' be the punishing strategy of Player i, i.e., Player i’ s strategy that holds Player
3 — i downtou®'(G). Notethat D' + a', and denote the pure strategy D' by 1.

The mixed equilibrium strategy of Player 2, 7*, chooses randomly a pure strategy ¢
where ¢ is an element of a message space Q. The message space Q is a set of sequences
of zeros and ones of length k, where k depends on the parameters of the game, T and my.
The mixed strategy o* of Player 1 and the pure strategy 7¢ of Player 2 induce a play

w(o*, 7)) = (wi(o*, 79, ..., wr(o*, 7°)) that depends on ¢, and therefore we may
denote it as w(e) = (wi(e€), ..., wr(e)) and cal it the proposed play. Player 2 commu-
nicates his choice of ¢ = (e, ..., &) in Q to Player 1 during the first k stages of the

repeated game by playing a® in all stagest with ¢, = 0 and playing D?in all stagest with
& = 1. The next k stages of the proposed play are used to balance the number of stages
1 =t = 2k with wi(e) = 0 and the number of stages 1 = t = 2k with w?(¢) = 1. The
proposed play satisfies also for every 1 = t = 2k, wi(¢) = 0. The sequence of actions of
Player 2 in stages 1 = t = 2k of the proposed play depends thus on ¢ and is denoted by
0(e) = (01(¢), ..., Oa(€)). We refer to the first 2k stages of the repeated game as the
communication phase. Following the communication phase w; (¢), . . ., wa(€) with w;(€)
= (0, 6,(¢)), and excluding the last stage of the game, the proposed play enters a cycle
of length I, where | depends on T, e.g., | will be the integer part of 2T/9, and | is much
larger than k. Both players cooperate during the first | — 2k stages of the cycle, i.e.,
wi(e) = (0,0) whenevert < Tandt(mod 1) = 2k + 1 or 0 = t(mod |). Following these
initial | — 2k stages in the cycle, the players play the string ((61(¢), 61(¢)) ... ,
(Ox(€)bx(€))), i€, for 2k < t with 1 = t(mod I) = 2K, wi(e) = (Bi(moa n(€),
Ot (moa1y (€)) -

The strategy of Player 1 will detect with positive probability any deviation of Player
2. Some deviations of Player 2 will be detected with positive probability immediately,
and others will lead to a detection with positive probability in afuture stage. The strategy
of Player 1 triggersto punishing (playing D*) forever onceit detects adeviation by Player
2. We turn now to the formal definition of the proposed play and the construction of the
equilibrium strategies.

We start with the construction of the set Q, and the integers k and |. Let L be a suffi-
ciently large number, eg., L = 4 will do. Let| = [T/(L + 1/2)], and let k = k(my, 1),
i.e, kisthe smallest integer such that 24 > m, — I. It follows that

(7) 2t < [(my — /1] < 2*

and therefore there isa subset Q = Q(my, 1) of {0, 1} *such that |Q| = [(m, — 1)/I]. It
followsthat (m, — I)/1 — 1 < |Q| = (m, — I)/1 and thus

(8) m—1<|QIl +1=m.

In addition we require the subset Q of {0, 1} * to satisfy the following two conditions:
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Q2{(er,. .1 e1,0):6 €{0, 13} (L ...,1)¢Q.

These additional two requirements are feasible by (7) and they are used to simplify the
explicit description of the proposed play as afunction of e € Q aswell asthe description
of the equilibrium strategy of Player 1.

Givene = (€1, ..., €) in Qwedenote by 6(¢) = (0:(¢), ..., 0x(€)) the element of
{0, 1} *givenby: fi(¢) = if L=i=Kk,0(¢)=0ifk<i=k+ Z¢ and b, (e) =1
if k+ X¢ < i = 2k. Notethat 6(¢) is a sequence of length 2k of zeros and ones having
exactly k zeros and k ones. The first k coordinates coincide with ¢, ..., ¢ and the
remaining coordinates start with a string of zeros followed by a string of ones so that the
total number of ones equals k. Note that for every (e;, ..., &) € Q, 21 ¢ < k, and
therefore 9, (¢) = 1 for every ¢ in Q. For every ¢ in Q we associate a play w(e¢) of GT,
i.e., asequencew(e) = (wi(e), ..., wr(e)) withw(e) = (wi(e), w?(e)) in Aasfollows:
wr(e) = (0,b?)and fort < T,

(0, 6:(¢)) ifl=t= 2k,
_J (00 if0< (t— 2k)(mod 1) =1 — 2k,
wle) = (6;(e), 6:(e))  if (t—2k)(mod 1) =1— 2k +i <],

(Oa(€), b)) if (t — 2k)(mod ) = 0.
Setting

(e) = ((0, 01(€)), - - ., (0, B(e))),
0*(e) = ((62(€), 02(€)), . .., (Ba(e), Oa(e))),

andd =T — 2k — LI,
w(e) = 8(e) + L O((1 — 2k) 0(0, 0) + *(¢)) + (d — 1) 0(0, 0) + (O, b?).

We derive in the following two lemmas two important properties of the proposed plays.

LemmA 7. The vector payoff =1_;r(w.(€)) is independent of ¢, and for sufficiently
large values of T,

IR(w(€)) =1 (0, 0)] <e.

ProoF. Forevery e € Q, X%, 6, (¢) = k. Therefore, 22,1 (6, (¢) = kr (0, 1) + kr (O,
0) and =Z,r (65 (¢)) = kr(1, 1) + kr (0, 0) for every ¢ € Q. Therefore,

% r(wie)) = kr(0, 1) + Lkr(1, 1) + r(0, b?) + (T — Lk — k — 1)r(0, 0).

t=1

As the right hand side of the above equality is independent of ¢, the first conclusion of
the lemma follows. As for T sufficiently large, (Lk + k + 1)/T is sufficiently small, the
second conclusion follows. O

Notice that for any e € Q and any 2k < t = 2k + |, the play (wi(¢€), ..., wiri_1(€))
is a coordinated play. The next lemma asserts that all these coordinated plays are | Q||
different ones.

LemmA 8. For every
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(e, 1), (e, t)e@x{2k+1,2k+2...,2k+ 1}
with (e, t) # (€', t'),

(wile)y - s wiima(€)) # (we(€), -y wenma(e')),
and thus there exists 0 = s < [, with
wirs(€) * wis(e")
and such that for every 0 = s’ < s,

(wi(e), ... wie(€)) = (Wi(€), ..., wiis(€)).

Proor. Note that in each one of the proposed plays w(e), € € Q, both players play
instagest =2k + 1,..., T — linconcet, i.e, wi(e) = w?(e). Therefore, it is enough
to prove that for any such pair (e, t) and (¢, t’), thereis0 = s < | with

(wi(e), + ooy wirs(€)) # (we(€'), ooy wris(e)).

or equivaently that thereis0 = s < | with
Wt+s(€) * wt’+s(6,)-

Assumefirstthat t = t" andthuse # ¢’. Asthemap e = 0*(¢) is1 — 1, 8*(¢) + 6*(¢’)
and therefore thereis0 = s < | with

(Wi(€), vy weas(€)) # (W (€, - v vy wras(e)).

Next assumethatt < t'. Ift" —t> 1 — 2k, settings=2k + | —t’,t" + s=1| + 2k and
thus wy,s(e’) = (1, 1) while2k < t + s < 4k and thus wy s(¢) = (0,0); and if t' — t =
| — 2k, settings=2k + | —t,t + s=1+ 2k and thus w,s(¢) = (1, 1) while2k + | <
t’ + s= 2l and thus wy s(¢) = (0,0). O

We describe now the equilibrium strategy of Player 2. The strategy of Player 2 calls
for playing according to the proposed play aslong as Player 1 follows the proposed play,
and it triggers to punishing (playing D?) forever as soon as it observes a deviation by
Player 1 from the proposed play w(e). Thus, for any € in Q, 7¢ = (7{){_; is the pure
strategy of Player 2 defined by,

wi(e) if (s, ..., 81) = (wile), ..., wia(e)),
1 otherwise.

7—§(S_’I.! e 15—1) = {

Note that the strategy =* communicates its choice of € in Q to Player 1 during the first

2k stages of the repeated game by defecting (playing D?) in all stagest for which 6,(¢)
=1

Observe that 7< € T2(T, T + 1), i.e., 7¢ is implemented by an automaton of size T

+ 1; indeed, let ({1, ..., T, T+ 1}, 1, f 2, g?) be the automation with action function

f2defined by f2(t) = wi(e)ift=T, 3T+ 1) = D? and g?(t,a) =t + lifa

=wi(e)andt =T, and g?(t,a) = T + 1 otherwisg, i.e, if a = wi(e), orift =T + 1

The equilibrium strategy 7* in A(22(T, my,)) chooses an element ¢ from Q, each

element equally likely, i.e., with probability 1/|Q|, and given its choice ¢, plays 7¢. In
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other words, 7* is the mixed strategy that selects the pure strategy =< with probability 1/
|Q]J, or in other words, 7* is the probability distribution on £?(T, m,) which assigns
probability 1/|Q| to each pure strategy 7 in (T, m,).

Let o be astrategy of Player 1, and e € Q, withr (o, 79) = 2L, r*(w(€))/T. Then
wi(o, 79) = wi(e) forany t = T — n where nis afixed number that depends on a and G
alone. Therefore, for any strategy o of Player 1,

(9) ri(o, 79 = i r(w(e))/T + CIT,

t=1

where C is a constant that depends on G aone.
Let o be a pure strategy for Player 1 with

T

rio, ™) = 3 i (w(e)/T,

t=1

and such that ¢ is implemented by an automation of size m,.
Set

(10) Q(1,0)={66Q:r%(g,7-f)>irl(wi_;_(e))},

(11) Q(2,0) = {e EQ\Q(Lo)irko, =Y r (w_lt_(e)) X —; (G) } |

t=1

and

(12) Q(3,0) = {e €Q:ri(o, 7)< i rl(w_lt_(e)) o x! _;1(6)} .

t=1

LeEmmA 9. For every pair (e, t) and (¢’,t"), with (¢,t) = (¢',t’)and t = t’, in the
union of the two sets

Q(l o) x{2k+1,2k+2...,3 + 2k}
and
Q2 0) X {2k+1,...,2k+ 1}
there exists s < T — t such that
(wie), ... wis(e)) = (Wi(e'), ..., wiis(e))
and
o(wi€), ..., wis(e)) # o (wil€'), ..., wees(€')).
Proor. For every e € Q(1, o), r*(o, 79) > R*(w(e)) and therefore there is a de-

viation from the proposed play but no deviation prior to stage 2k + 4l, i.e., for every «
€ Q(1,0)andevery t = 2k + 4, w(o, 7°) = wi(e). Forevery e € Q(2, o), r'(o, 79)
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> RY(w(e)) — (x* — u*(G))/3 and therefore no deviation from the proposed play prior

tostage 2k + 2I,i.e, forevery e € Q(2, o) and every t = 2k + 2I, wi(o, 79) = wi(e).
Therefore, if eithert = t"(mod 1) ort = t’(mod ) and ¢ = ¢’ apply Lemma 7. If t

>t t=t'(modl)and e € Q(1, o), let s be the largest positive integer such that

(wile), ..y wus(€)) = (w0, 7, .oy weas(o, 7).
Asri(o, 79 #+ RY(w(e)),s< T — tand
o(wi(e), ... wus(e)) # o(wi(e'), ..., weis(e)). O
Lemma 8 implies that
(13) comp(o) = 3[Q(L, o)| +11Q(2 o).

LeEmMmA 10. For any strategy o € £* (my),

1
ri(o, ™) =—75 RYw(e)).
*( ] % (w(e))
Proor. If ri(o, 7) = S1rt(wi(€))/T, it follows from (9) and the definition of
Q(3, o) that

C rt(a) — u*(G)
TR o)l == 1Q ),

_ T(r'(a) - uX(Q))
- 3C

1Q(1, o) 1Q(3, o)l

Either Q(3, o) = ¢ and then |Q(1, o)| + |Q(2, ¢)| = |Q], thus using (13) and
(8),

m = |Q(1,0)|31 + |Q(2, o)l

= |QIl + |Q(1, 7)[2l
>m -2+ |Q(1, o) |2

which is possible only when Q(1, ¢) = @ and thenr (o, 7*) = =L, r*(w(¢))/T. Or,
Q(3,0) = @, and T > 6C/(r*(a) — u*(G)). Then,

1Q(1,0)| >2|Q(3,0)| = 2.

In that case,
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m = [Q(L o) |3 + [Q(2 D!

= 1Q(1, )l 5 + 1Q(1L 0)| 2+ 1Q(2, D]

> 1Qll + 1Q(L, ) 5

>m — 2+ |Q(1, o)l
>m1!

which isimpossible. O
We construct now two pure strategies of Player 1, o?, p = [I/3] and p = 2[I/3] in
>1(m,) that satisfy the following two properties:

w(oP, 79 = w(e)

and if o* isthe mixture of the two strategies o °, each with probability 1/2, then for every
pure strategy 7 in 2 of Player 2,

rH(o*,7) = 3 ().

It will follow that (o*, 7*) isindeed an equilibrium of G™(my, m,).

Each of the pure strategies, o, is implemented by an automaton with state space Q
x{1,...,1} U{}. The state  of the automaton is interpreted as the punishing state.
Once the automaton moves into that state, it stays there and ‘‘punishes’ forever, i.e.,
plays 1 repeatedly. Theinitial state of the automaton is (0, p) where 0 is the sequence of
zerosin Q. The action function of the automaton implementing o is independent of the
value of p and is given by:

fH(@)=1

andforeinQandl=j=I,

. 0 ifl=j=I1-2k,
fi(e)) = . :
Oi(e) ifj=1—-2k+i.

We may visualize the states of the automaton of the form (e, j) asif they are arranged in
arectangular array with |Q| rows and | columns. The rows are indexed by the different
elements ¢ in Q and the columns are indexed 1, . . . , |. Thus the action function assigns
to each state in thefirst (I — 2k) columnsthe action a*, and in all other columns an action
that depends on the row.

Figure 2 is a partia illustration of the automaton of Player 1, in the case that k = 3,
|Q| = 7 and p = 2[I/3]. The only states depicted in Figure 2 are the elements of Q
x{p,...,p+ 6,1 =6,...,1 —3}. Thedisks (circleswith the center filled in) represent
states of the automaton that take the action 1. The other circles represent states of the
automaton that take the action 0 (a*). For every 1 = t = 3, the action of Player 1in state
((e1, €2, €3), | — 6 + 1) ise. Therefore, the sequence of the last three circles and disks
in each row identifies the element ¢ € Q. The initia state, ((0, O, 0), p) is marked with
an [
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FIGURE 2.

The horizontal arrows indicate the transitions of the automaton given a coordinated
play, as expected in the cycles. The double arrowsindicate the transitions of the automaton
given action 1 by Player 2. The triple arrows indicate the transitions of the automaton
when the action of Player 2 iseither 0 or 1. The circles with a dot at their center, indicate
the states (¢, p + 5). If the automaton of Player 1 is state (¢, p + 5) and Player 2 takes
the action 1, the next state of the automaton of Player 1is (e, 1).

The transition function of the automaton of Player 1 that implements o®, is described
by the function g* = g; which depends on the integer p. There is one state of the auto-
maton, the punishing state ¢, which is an absorbing state, i.e.,

9%(2. 0 = &.
During the first k stages of the game, the automaton is moving between the different rows
in such away that in stage k + 1 the state of the automaton is the row that corresponds
to the sequence of actions of Player 2 in the first k stages of the game. This is achieved

by the following partial definition of the transition function. If € = (e, ..., &) = (€1,
€-p, 0,...,0)andp =j < p + k, then,

9'((e,j), 1) =((e2,---+6-p,1,0,...,0),j+ 1).

One property of the transition function of the automaton implementing o ?, that will follow
from our definition of gg, is:

95((0, ), (02(e), - -+, Ox(€))) = (e, 1).

The next step in our construction of the transition function g, ensures that the strategy
o P follows the proposed play w(e) aslong as the other player follows the proposed play.

9'((e,}),0) = (e,j +1) ifj=1-2k,
9*(e]), €)= (6] +1) ifj=1—-2k+iand8 (c) = c.

In most other cases, the automaton will trigger to punishing forever, i.e., will move to



FINITELY REPEATED GAMES WITH FINITE AUTOMATA 541

the state 7. However, there are few states which tolerate a play by Player 2 that differ
from 0. As follows from our construction, the states of the form (e, j), withp=j <p
+ k, are used by the automaton of Player 1 to differentiate among the possible messages
e € Q that Player 2 may transmit in the first k stages of the game, and therefore they do
tolerate the actions 0 and 1 of Player 2. The states of the automaton that are of the form
(¢,j),withp+ k=j <p+k+ =F,¢ do not tolerate any deviation, i.e.,

k

gl((G:j):l)Z@ |fp+k£]<p+k+26|

i=1

Several states of the form (e, j) withj = p + k + =K, ¢ tolerate also the action 1 of
Player 2. These states and transitions do depend on the value of p and are described below.
The uncertainty of Player 2 about the value of p disables him from exploitation of this
toleration in future stages of game without risking detection with probability at least 1/2.
If p=1[1/3], then

k k
9'((6j), 1) =(ej+2) ifp+tk+Yeg=j<p+3k-2-3 ¢ and
i=1 i=1
k
j—p—k=3 & iseven,
i=1

g'((e,j), 1) = (e, 1) if]j =p+3k—2—§ei.

If p = 2[1/3], then

k
g'((e ). D =(cj+1) ifp+tk+Fea=j<p+2k-1

i=1

9'((e,j),1) = (e, 1) ifj=p+2k—1

Inal other casesthe value of g; equals . In order to provethat (o*, 7* ) isan equilibrium
of G"(my, m,) it suffices to show that 7 isindeed a best reply of Player 2 to o*.

LeMMA 11. For every strategy 7 € X2 and every e € Q,

T T
> r2(o*, 7) = > r2(o*, 79).
t=1 t=1

Proor. Assume first that 7 is a pure strategy of Player 2 such that for some e € Q,
wi(o*, 7) = w(e) for every 1 =t = 2k, and r3(o*, 7) = r?(c*, ™) = r?(c*, 79).
Either w(o*, 7) = wi(e€) for every t = T, and then r?(¢*, 7) = r?(o*, 7*), or there is
2k < s = T with ws(o*, 7) # ws(e) and without loss of generality assume that for every
1l=t<s, w(o*, 7) = w(e). Observe that T — 2k — LI is of the order of 1/2 and
therefore for sufficiently large values of T, [I/3] + 3k < T — 2k — LI < 2[I/3], and
thusinstagesT >t > 2k + LI + [1/3] + 3kthestrategy o* does not tolerate any deviation
from the proposed play. Also in these stages wi(¢) = (0, 0) and r2(0, b?) = r?(0, 0)
> Uu?(G). Therefore, if T > s> 2k + LI + [1/3] + 3k, r?(o*, 7) < r?(c*, 7°), and if
s=T,r%(c*, 7) = r?(o*, 79. If 2k < s = 5k + LI + [I/3], then at least one of the
two strategies oP, p = [1/3] or p = 2 [1/3] detects immediately the deviation of Player
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2 from the proposed play w(e), and thus with probability at least 1/2 Player 1 detects
immediately the deviation of Player 2. Observe that there is a constant C such that any
play w of GT which is compatible with o? satisfies R*(w) = R?(w(¢)) + Ck/T, and on
the other hand, if in addition a deviation by Player 2 is detected prior to stage 2k + LI
+ [1/3] + 3k, r?(w) < r%(w(e)) — 1/C. Thus for any strategy 7 of Player 2 which is
compatible with 8(¢) and deviates from the proposed play prior to stage 2k + LI + [1/3]
+ 3k, r2(o*, 7) <r?(o*, m*). If (wi(o*, 7),...,ws(c*, 7)) isnotin (Q), then with
probability at least 1/2 Player 1 detects the deviation of Player 2 prior to stage |, and
therefore his loss is approximately at least (T — 1) (x2 — u?(G))/T, which is of the order
of a positive constant. His possible gain is at most of an order of k/T. Therefore m* is
indeed a best reply against o*. O

This completes the proof of case 1 under the assumption that m, > T.

(B.2) subcase 1 withm, = T.

The handling of Case 1 under the assumption that T/4 = m, = T could be done in
various ways. For example, replace in the proposed play (0, b) with (0, 0), and Player 1
sends a message at the first stages of the game, before Player 2 sends his message, and
the proposed play depends also on the message sent by Player 1, so that Player 2 isunable
to count to stage T and deviate then, or by relying on our handling of the other casesin
which Player 2 does not wish to deviate in the last few stages.

(B.3) subcase 3.

We turn now to the proof in Case 3. Recall that a proof of Case 3 provides also a proof
for the other cases. There are several features present in the proof of Case 3 that were not
present in the above proof in Case 1.

We start handling subcase (3.2). Assume that al = a} # a3 and assume further that
a2 = a3. Again, Player 2 communicates its choice of ¢ € Q C {0, 1} ¥ during the com-
munication phase which lasts for 2k stages. The resulting play in the communication phase
is denoted A(¢). Following the communication phase the play enters a cycle of length I,
part of which is a verification phase in which Player 1 communicates back the chosen e.

Assume that x € co(r(A)) with X' > u'(G). As in the proof of the case m, < T/4
(where we replaced € by &/4 and x by avector payoff y > (u*(G) + 2¢/3, u3(G) + 2¢/
3) which is 2¢/3 apart from x), we may assume without loss of generality that x'
> U'(G) + 2¢, and that £ > 0 is sufficiently small and the inequality m, = exp(&°T) is
replaced by m, = exp(64¢°T). Without loss of generality we denote ai and aZ by 0 and
a3, a2 and a3 by 1, and thus we assume that

X = Nof (0, 0) + \ir (1, 1) + Ao (0, 1),
W|th )\0 > O, )\1 > O, 7\2 > O, andEizzo)\i =1 LetL = [3K/8] . E'ther )\orz(o, O) + )\zrz(o,
1) > (U*(G)+ 2e)(No + ), or r?(1, 1) > u?(G) + 2. Assume first that r2(1, 1)
> U?(G) + 2. Set

| = [T/(L +1-6)],

d = [N],
d=L*%

d, = [IN/d],

ds = [INo(1 — 1/L)/d], and
do=1—di — ddy — d(d + 1)/2 — dd.

The number | is the number of stages in each cycle following the communication phase.
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The action pairsin each cycle are (0, 0), (0, 1) and (1, 1). The number of plays of the
action pairs (0, 0), (0, 1) and (1, 1) in each cycle will turn out to be approximately o,
I, and I\;, and thus the average payoff in the cycle is approximately x. The number of
complete cyclesin the proposed play will turn out to be equal to L. The (L + 1)-th cycle
will amost reach its end. The variable 6, which appears in the definition of the length |
of the cycle, is sufficiently small, so that

(L+1)-T<l.

On the other end, it is not too small. It is sufficiently largesothat (L + 1)1 = T. E.g., 6
= g2 The last two inegualities will enable us to start playing the proposed cycle imme-
diately after the communication phase and define the cycles c(¢) in such away that: (1)
the last part of the cycle is independent of ¢, (2) the last string of action pairs in the
proposed play isof theform g(a*, a®) + (a?, b?) where 3 isasufficiently large positive
integer, r2(a*, a?) > u?(G) + &, b?is a best reply of Player 2 to the action a* of
Player 1.

Letl, = do + d;. Player 1'scomplexity of the repeated play of each one of the proposed
cycles will turn out to equal 1;. Note that d, is approximately INo/L. Let k = k(my, |,),
i.e., kisthe smallest integer such that 24, > m, — I,. Asm, = exp(64<°T),

(14) k < 90¢°T.
Let Q = Q(my, I,), asin case 1. Recall that
(15) m — 1 < [Q[ly + 1y = m,.

Recall that for every e € Q we associate two plays; the communication play 6(¢), and
the verification play 6*(¢).
k k
0(e) = (0, &) + --- +(0,&) + > ¢ 0(0,0) + (k— > ei> 0(o, 1),
i=1

i=1

and

0*(¢) = (€1, €1) + - -+ + (e, &) + % 6 0(0,0) + <k— % ei> 0(41,1).

i=1 i=1

Recall that for every e € Q, 2K ,¢ < k, and thus the communication play ends with (0,
1) and the verification play ends with (1, 1). Define the play ¢* by,

c* = % (ds 0(0, 0) + d, 0(0, 1) + (i — 1) O(0, 0) + (O, 1)).

i=1
Note that for every 1 =i = d,
|d; 0(0,0) +d, 0(0,1) + (i—2)0(0,0) + (0, 1)| =ds + dy + i

and
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HR(d3 000, 0) + dy 0(0, 1) + (i — 1) 0(0, 0) + (0, 1)) — 2 (0. 0) * Aar (G, ”H

No + N2
< O(1/L).
Define the play ¢ = c(¢) of length | by,
c=6*e)+c* + (do— 2k) O(0,0) +d; O(1, 1).

The following lemma asserts that the average payoff per stage in the play c is approx-
imately x.

Lemma 12. The vector payoff R(c(¢)) isindependent of ¢, and for sufficiently large
values of T,

IR'(c) — X'| < &l2.

Proor. The number of times that each one of the action pairs, (0, 0), (0, 1) and (1,
1), appearsintheplay c, equalsk + dd; + d(d — 1)/2 + dy — 2k =1 —dd, —d — d;
— k, dd, + d, and d; + k, respectively. The inequality (14) implies that for sufficiently
large valuesof T,

||)\1 - (dl + k)| < 9183T,
and by the definition of d,,
[IN, — (dd, + d)| =d,
and thus using the above two inequalities,
[INg — (k+ dd; + d(d — 1)/2 + do — 2k)| < 91&°T + d.
Therefore, for sufficiently large values of T and e sufficiently small,

IR'(c) — X'| <el2. O

Define the proposed play w(e) by, wr(e¢) = (1, b) where b is a best reply of Player 2
to the action 1 of Player 1, and

w(e) = 1 8(e) + (L + 1) Oc.

Recall that the last d; = [\4l] action pairs of the play care (1, 1), and that as| = [T/(L
+1-9)],

l+2k—-L—-1<(L+2I+2k—T=46l +2k<dy,

and thus the proposed play ends with along string of (1, 1) followed by the action pair
(1, b?).

The following lemma asserts that the average payoff per stage in the proposed play
w(e) isindependent of ¢ and is approximately x.

LemmA 13. The payoff per stage in the proposed play w(e), R(w(¢)), isindependent
of e, and for sufficiently large values of T,



FINITELY REPEATED GAMES WITH FINITE AUTOMATA 545

IR (w(e)) — X'| < e.
Proor. Note that R'(wy(€), ..., wa(e)) isindependent of ¢, and so is R'(c(¢)).
Therefore, R'(w;(€), . . ., waen (€)) isindependent of e. Observe also that
(w2k+LI+lv ey w-r,l) + (2k + (L + 1)| +1- T) D(l, 1) = C(E)

and wr(€) = (1, b?). Therefore, as the vector payoff R(c(¢)) isindependent of ¢, so is
R(wacitis1, - - - » wr). Thus we deduce on the one hand that R(w(¢)) is independent of
¢, and on the other hand, using the inequality 2k = 2k + (L + 1)I = T = |, |R'(w(e) —
Ri(c)| < K/L = &/3. As |R'(c) — X'| < &/2, theresult follows. O

Asusud, for every e € Q, T isthe pure strategy of Player 2 that follows the proposed
play w(e) aslong as Player 1 follows it, and it triggers to punishing forever as soon as a
deviation from the proposed play is observed. The mixed equilibrium strategy of Player
2,7 € A(Z?(T, m)), chooses an element e € Q, each element with probability 1/|Q|,
and given its choice ¢, plays the pure strategy 7¢. The mixed equilibrium strategy of
Player 1, o* € A(Z*(T, my)), is a mixture of pure strategies, each being implemented
by an automation with state space

M={Z}uQx{1,...,1,}.
The action function of the automaton is given by,
f(Q) =D,
and

Oi(e) ifl=j =2k,
fl(e,j) =140 if 2k <j = do,
1 ifdo<j=d.

The transitions of the automaton will be defined so that for each fixed € € Q, if Player
2's strategy is 7¢, the state of the automaton at staget =1 + 2k + j with1 = j = 2k, or
astaget=1+2k— 1, +jwith2k + 1 =j = |, is(e, j). Thisleads to the following
defined transitions:

(,j+1) ifl=j<2kandf(e) =0,

g ((G'j)'o)z{(&j-ﬁ-l) if 2k <j = do,

and

(6,j+1) ifl=j<2kand§(e) =1,
0% ((e,j), 1) =1(e,j+ 1) ifdo<j<ly,
(e, 1) ifj=1,.
The states of the automaton of the form (e, j) with 1 = j = 2k or j > d, expect a
coordinated play. Any deviation from a coordinated play (either (0, 0) or (1, 1)) at these

states results in punishing forever. This is accomplished by defining the following tran-
sitions:
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@ ifl=j=2kandb(e) =1,

g ((611)’0)2{@ ifdo <j=Iy,

9'((e,j), 1) =@ ifl=j<2kand¥(e) =0,
and

g, D =@.

So far we have defined parts of the transition function of the automaton of Player 1
which are independent of the pure strategies in the support of o*. Other parts of the
transition function, and the initial state, are random and do depend on the following
independent random elements. A random integer p, do — 2Lk = p < do — 3k, where [
is a sufficiently large positive integer, random integersq, 1 = q=2,andz,1=z=1L,
arandom increasing functionj,j:{1,...,L} > {2k+ d:+ 1,...,dy — 3Lk} withj(i
+ 1) >j(i) + 2d, + d; + d, and arandom sequenceiy, ..., iy of elementsof {1, ...,
L}. Theinitia state of the automaton is (0, p) where 0 is the sequence of zerosin Q. We
define now those transitions that enable Player 1 to record the chosen e € Q. If ¢ = (¢4,

ve) = (e, 6-p, 0., 0)andp=j<p+k,and(e,...,¢p,10,...,0)
€ Q, then,

(&), 1) = ((ex, -1 6.5, 1,0,...,0),] + 1).

The states of the automaton that are of the form (¢, j), withp + k =j < p + k
+ XK ;¢ do not tolerate any deviation, i.e.,

k

9 ((ej), 1)=& ifp+k=j<p+k+73 ¢.

i=1

Several states of the form (e, j) withp + k + =K.,¢ = j = p + 3k tolerate also the
action 1 of Player 2. These states do depend on the values of p and g. The uncertainty of
Player 2 about the values of p and g disables him from exploiting this toleration in future
stages of the game without risking detection with high probability. If g = 1,

k

(6,J+1) ifp+k+ > ea=j<p+ 2k,

gl((e,j), 1) = i=1
(¢, 1) ifj=p+2k—1,
and if g = 2,
4 k K
(,j+2) ifp+tk+Yea=j<p+3k-3 ¢,

i=1 i=1

k

9'((e, ), 1) = 3 andj —p—k— Y ¢ iseven,
|k:1
(e, 1) ifj=p+3k—-3 ¢—2,
- i=1

and
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9" ((e, 2k), 1) = (e, j(i1) — do).
For every 1 = t = d, we define the following transitions.

9% ((e,j(it) + 25),1) = (6, j(i) + 5+ 2) IfO=s<d,,

and
o (6,j(iyy1) — d3) ifs=j(iy) +zd, +tandt < d,
9'((e,j(i) +8),1) = . o
(e, 2k + 1) ifs=j(iy) +zd, + tandt = d.
Note that our assumptions on the random sequenceiy, . . ., ig and the random function

j,implythat for 1 =t < T, j(i,) +t=]j(ip) + T, and thus the above transitions are well
defined. In all other cases the automaton moves to the punishing state ¢.

LeMMA 14. For every strategy o € X7,

comp(o) = 31;1Q(1, o)| + 1L|Q(2, 0)],

where Q(1, o) and Q(2, o) are defined asin (10) and (11), respectively.
Let |c* | denote the length of the play c*,i.e, |c*| = =%,(d; + d, + i). Consider the
two sets

X=Q(1, o) X ({4k+ |c*|,...,dk+1 -1} +{0,1,21})
and
Y=Q(2,0) x {4k + |c*|,...,dk+1—-1}.
By the definition of the complexity of a strategy, it suffices to show that for every pair

(e, 1) = (¢', t') with t = t’ in the union of the two sets, X U Y, (wi(€), ..., wi(€)) is
compatible with &, and

(16) (olwi(e), ..., wile)) # (a|lwi(e), ..., we(€)).

For every e € Q(1, o), r'(o, 79 > RY(w(¢)) and therefore there is a deviation from
the proposed play but no deviation prior to stage 4k + 41, i.e, for every e € Q(1, o) and
everyt = 4k + 4l, wi(o, 7°) = wi(€). Inparticular, (wi(e€), ..., wara(€)) iscompatible
with o. For every e € Q(2, o), r*(o, 79 > R*(w(e)) — (x* — u*(G))/3 and therefore
no deviation from the proposed play prior to stage 4k + 21, i.e., for every e € Q(2, o)

andevery t = 4k + 2, wi(o, 79) = wi(e). In particular (w1(e€), ..., waiz(€)) iscom-
patible with o.
The play (waks1+c+ (€), - - ., wasi+g,(€)) IS @ coordinated play with the first do — 2k

and the last d; action pairs being (0, 0) and w41 (€) = (1, 1). Asd; > 2k, the string (1,
1) + d; O(0, 0) appears only at the end of the play, and therefore, if 4k + |c*| = t’
<t<4dk+1,

(wirae)s ooy wan(€)) #= (wrsa(e), - o wWacire—t(€)).

As each one of these two plays is a coordinated play, (16) follows. The same argument
appliesfor al pairs (e, t) = (', t") witht = t"(mod ).
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We consider next thecaset =t'(mod|) and € + ¢'. Note that the play c* isindependent
of € and therefore so is the play

(wari+2(€), o v, W4k+l+|c*\(€)) =C*.

On the other hand,
(Waksi+1cy1+1(€),s - -+, wara(€)) isacoordinated play.

Therefore, if t =t'(mod 1) and e # €',

(wesr(€)y - ooy wip(€)) = (we(e'), ..., wra(e)).

Let s be the smallest nonnegative integer with

(wisr(€)y .oy wirs(€)) = (wrgale'), ..oy wrys(e')).

It follows that wi,s(e) # wis(e’) and thus (16) holds.
Assumenextthatt >t’,t —t’ =0(modl)ande = ¢’ € Q(1, 7). Let sbethe smallest
positive integer such that

wiis(€e) # wiis(o, 79).
Asri(o, 79) # RY(w(e)),s=T—tand

(wira(€)s vy wisa(€)) = (wrsa(€'), .o wrisa(€)),

and thus (16) follows. O

LemmA 15 For every o € ='(my),

ri(o,m™)=75% M

t=1

Proor. Let o be apure strategy for Player 1 with

i i )

and such that ¢ is implemented by an automaton of size m;. Recall that o satisfies the
inequality (9). Define Q(1, o), Q(2, ¢), and Q(3, ¢) as in (10), (11), and (12),
respectively. By Lemma 14,

(17) my = comp(o) = 311 Q(L, 0)| + 11[Q(2, 7).

Either Q(3, ¢) = ¢, and then |Q(1, ¢)| + |Q(2, ¢)| = |Q|. However, comp(c)

= m, which is compatible with (15) and (17) only if Q(1, ¢) = ¢ and thenr +(o, 7*)

=ri(o*, 7*).0r, Q(3, c) + . Then, it follows from (17) and (15), that |Q(3, ¢)|l1

+ 1, = 21,1Q(1, 0)], and therefore for sufficiently large T, r 3(o, 7*) = ri(o*, 7*). O
Next we will prove that 7* is a best reply of Player 2 to o*.

LemMA 16. For any T € 32,
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r2(o*, ) = r?(o*, ™) = R¥*(w(e)).

Proor. Let 7 be a pure strategy of Player 2. Note that the induced play w(o*, 7) is
a random sequence. We will prove that

E(R?(w(o*, 7)) = r3(o*, 7) = r3(o*, 7).
Assume first that thereise € Q with
wi(o*, 1) = w(e) Ot = 2k.

Note that for any t = T and any a € A?,

T

r2(wi(e), a) + (T = Yu*(G) = 3 r*(ws(e)).

s=t

Let t be the smallest integer with w;(o*, 7) # wi(€). Then, if w(e) = (1, 1) Player 1
will trigger to punishing forever, and then r 2(o*, 7) = r2(o*, 7). If w(e) = (0, 0)
thent = T — \l/3 and with probability closeto one, Player 1 triggersto punishing forever
resulting in future losses to Player 2 of 2¢(\; — €2)1. The one time deviation can generate
agan of the order of a constant, and no sufficient certainty to generate additional gains
in the future. Thereforer2(o*, 7) = r2(o*, 7). If w(e) = (0, 1) thent = T — d, and
with probability close to one, Player 1 triggers to punishing forever in the next do — 2k
— 1 stages. As L is sufficiently large, and do and d, are approximately Ixo/L and I\,
respectively, it followsthat r 2(o*, 7) = r 2(o*, 7). Finaly, observe that if (wi(o*, 7),

., wi(o*, 7) & 6(Q), then with probability at least 1/2 Player 1 will trigger to
punishing forever in one of the next 2Lk stages, and the possible gains from such a
deviation are offset by the loss in case Player 1 redlizes a deviation. Altogether, we
conclude that (o*, 7*) is an equilibrium of GT(my, my,). If r3(1, 1) = u?(G) + 2¢ then
one modifies the proposed play so that the game ends with the last string (d, — 2k) O(0O,
0) (if r2(0,0) =r?(0, 1)), or thelast string d, [J(0, 1) . For example, by adding the play
d, 0(1, 1) following the communication phase where d, < d; and if needed changing 6.
The proof in the subcases 3.2 when |{a%, a3, a3} | = 3, follows the same lines as our
present proof: Without loss of generality a;, = (0, 0), a, = (0, 1) and a; = (1, 2). The
action pairs (0, 1) in the communication play are replaced by (0, 2) and the action pairs
(1, 1) in the proposed play arereplaced by (1, 2). In subcase 3.1, one adds an action pair
a, with a} = a} and approximate the vector payoff x by a convex combination of r(a),
1 =i = 4, and the rest of the proof is very similar to our handling of subcase 3.2. In case
3.3, assume first that a2 = a2 = a3. W.l.o.g. r’(a,) = r?(a,) = r?(as), &, = (0, 1), &
=(1,1,a;=1(21),a =(0,0) and O is a best reply of Player 2 to the action 0 of
Player 1. One approximates x as a convex combination of r(a ), 1 = i = 4, and designs
a similar proposed play as in our case 3.2, making sure that the synchronization is such
that the game ends with a long string of (0, 0). This completes the proof of Theorem 1
under the conditionm, > T. If m, = T one either makes the modification indicated at the
close of the proof of case 1), or refers to the next comment.

Any payoff x € cor (A) isan average .- N\ (@) where for every a € A\, > 0 and
Sacala = 1. It should be clear from our proof of subcase 3.2 that one can actually generate
an equilibrium of G™(my, m,) that consists of a communication phase and the play in the
cycle runs over al action pairs a € A with frequencies which are approximately \,.
Moreover, one can synchronize the play so that the game terminates with along string of
best replies of Player 2 yielding him a payoff above his individual rational one. This
completes the proof of Theorem1. O
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ProoF oF THEOREMS 2 AND 3. Theorems 2 and 3 (assuming that there is x €
co(r(A)) with x' > v'(G)) follow directly from our proof of Theorem 1 together with
Theorem 5, by replacing the single punishing state in the automaton of each player with
a set of punishing states of sizel;.

Assume next that thereisno x € co(r (A)) withx' > v'(G). Either x = (v}(G), v?(G))
for every x € co(r (A)) with (x*, x?) = (v*(G), v*(G)), and then the theorem follows
directly from Theorem 5, or we may assume without loss of generality that x? = v2(G)
for every x € r(A). Therefore it must be the case that there is a strategy, say 1, of Player
2, such that for every strategy ¢ of Player 1, r?(c, 1) = v3(G). Assume that b € A
maximizesr'(c, 1), and a € A* minimizesr*(c, 1) with a #+ b. Note that it follows that
vY(G) = r¥(b, 1). The play T O(b, 1) is an equilibrium play of G"(my, m,). If x
= N\r(a, 1) + Nrt(b, 1) with xt > v*(G), A\a, Ay > 0and A, + \, = 1. Then aplay of
theform d, O(b, 1) + (L O(d, O(a, 1) + d, O(b, 1)) isan equilibrium play of G™(m,,
my) for d, sufficiently large, x* < R*(d, O(a, 1) + d, O(a, 1)) < x* + /2, L sufficiently
largeand doy + L(d, + dy) = T. Thisillustrates the result for payoff vectorsin theinterval
[r(a, 1), r(b, 1)]. Assume next that there is an action pair (0, 0) withr*(0, 0) > r*(b,
1) and r3(0, 0) = r?(b, 1). Then the action pair (0, 0) differs from either (b, 1) or (a,
1) in each coordinate. Any individua rational payoff is either in the interval [r(a, 1),
r(b, 1)] or a convex combination of the payoffs to two strategy pairs (0, 0) and (b, 1).
Label the action b by 1 if b = 0O, or label the action a by 1 if b = 0, and construct an
equilibrium of G™(my, m,) in which the communication and verification phases are the
same as in our proof of Theorem 1 and the cycle consists of one string of the strategy
pair (0, 0) and another string of the strategy pair (1, 1). O

ProoF oF THE MaIN THEOREM. Let G = ({1, 2}, A, r) be atwo person game in
strategic form, and let (T, my(T), mx(T))7-1 be a sequence of triples of positiveintegers
withmin_,,m(T) >~ asT— o, and

logmaxi_., m(T)
(M (T), m(T). T) >

By Theorem 3 it follows that

liminf E(GT(my(T), my(T))) D E(G%).

On the other hand, any x € E(G"(my(T), my(T))) is obviously in co(r(A)), and by
Theorem 5, for every e > 0, x' > v'(G) — ¢ for sufficiently large values of T. Therefore,

lim sup E(GT(my(T), m(T))) C E(G%)

T—
which together with the previous inclusion proves the Main Theorem. O

8. Remarks. Itisof interest to complete the study of the asymptotics of the equilib-

rium payoff sets E(G™(my, ..., m,)) of finitely repeated n-person games. Severa ex-
tensions need only minor modifications. For example, the generalization of Theorem 1
forthecasethatm, = --- = m,_; = myand x = K Nr(a) with \, = 0, KN =1

and [{al| 1 =i =Kk}| = kfor every 1 = j = n. Other extensions are more intricate.
The conclusion of Theorem 1 continuesto hold for n-person finitely repeated games under
the assumptionsthat m, = m, = --- = m,_; = m,and m,_, = exp(e°T), and that there
are pointsy, z € co(r(A)) withy < Z,i = h — 1, n. There are, however, difficultiesin
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0,0,01]0,0,8 0,0,810,0,8 3,3,513,3,5
0,0,810,0,8 0,0,810,0,0 3,3,513,3,5
FIGURE 3.

extending our main theorem to n-person games. The naive generalization is not correct,
however. Consider the 3-player game G of Figure 3.

Player 1 chooses the row, Player 2 the column, and Player 3 chooses the matrix. Note
that v*(G) = 0 = v3(G) and v3(G) = 6. Thus E(G?) is the set co{(0, 0, 8), (0, 0, 6),
(2,2,6)}. Inparticular, (3, 3,5) ¢ E(G%). Denote by w'(G) the max min of Player i
where he maximizes over his mixed strategies and the min is over the pure Strategies of the
other players. In the game above, W*(G) = MaXye a2 MiN(aza2) carazr (al, a2, x) = 4and
thus by using either Proposition 2 or Proposition 3 of Neyman (1997) one may construct
sequences My (T), my(T) and ms(T), with my(T) = ms(T) and limr... min{m,(T), my(T)}
= oo such that (3, 3, 5) € lim supE(G™(my(T), my(T), m; (T)). For example, if (my(T)
log my(T))/ min(T, my(T)) > 0asT — oo, repeated play of the right matrix is the outcome
of apure strategy equilibrium of GT(my(T), my(T), me(T)) and if my(T) = m(T) = o(T)
with log my(T)/ min(my(T), log ms(T)) = 0as T — «, repeated play of the right matrix is
the outcome of a mixed strategy equilibrium of G™(my(T), my(T), ms(T)). We hope to
provide details of our findings for n-person finitely repeated games with finite automata in
the future.
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