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The paper studies the implications of bounding the complexity of the strategies players may
select, on the set of equilibrium payoffs in repeated games. The complexity of a strategy is
measured by the size of the minimal automation that can implement it.

A finite automation has a finite number of states and an initial state. It prescribes the action to
be taken as a function of the current state and a transition function changing the state of the
automaton as a function of its current state and the present actions of the other players. The size
of an automaton is its number of states.

The main results imply in particular that in two person repeated games, the set of equilibrium
payoffs of a sequence of such games, G(n) , n Å 1, 2, . . . , converges as n goes to infinity to the
individual rational and feasible payoffs of the one shot game, whenever the bound on one of the
two automata sizes is polynomial or subexponential in n and both, the length of the game and the
bounds of the automata sizes are at least n .

A special case of such result justifies cooperation in the finitely repeated prisoner’s dilemma,
without departure from strict utility maximization or complete information, but under the as-
sumption that there are bounds (possibly very large) to the complexity of the strategies that the
players may use.

1. Introduction. A fundamental message of the theory of repeated games is that the
cooperative outcomes of multi person games, provided those games are repeated over and
over, are consistent with the usual ‘‘selfish’’ utility-maximizing behavior assumed in
economic theory. For example, in the prisoner’s dilemma of Figure 1, the only rational
outcome in noncooperative play of the one shot game is (1, 1) . But in infinitely repeated
play, the players can achieve the cooperative outcome (3, 3) in equilibrium.

Indeed, the Folk theorem and several other results (Aumann 1959, 1960, 1981, Aumann
and Shapley 1994, Fudenberg and Maskin 1986, Rubinstein 1994, and Sorin 1986, 1990,
1992) assert that cooperative outcomes of the one-shot game are equilibria (and also
perfect equilibria) of the infinite repetition of that game. Cooperation is also rationalized
by Nash equilibria or even perfect equilibria in some classes of finitely repeated games
(Benoit and Krishna 1985, 1987 and Gossner 1995). However, there are games, including
the prisoner’s dilemma, that are not in this class; indeed, in any finite repetition of the
prisoner’s dilemma, all equilibria (and all correlated equilibria and all communication
equilibria) lead to the noncooperative outcome at each stage. This contrasts with the
common observation in the experiments involving finite repetitions of the prisoner’s di-
lemma, that players do not always choose the single-period dominant actions, but instead
achieve some mode of cooperation.

The present paper justifies cooperation in the finitely repeated prisoner’s dilemma, as
well as in other finitely repeated games, without departure from the strict utility maxi-
mization, but under the assumption that there are bounds (possibly very large) to the
complexity of the strategies that players may use.

2. The model.

2.1. Strategic games and equilibria. Let G be an n-person game, G Å (N ; (Ai)i√N ;
(r i)i√N) , where N Å {1, 2, . . . , n} is the set of players, Ai is a finite set of actions for
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FIGURE 1.

Player i , i Å 1, . . . , n , and r i : A 1 1 ··· 1 An r R is the payoff function of Player i .
The set Ai is called also the set of pure strategies of Player i . The Cartesian product
1i√NAi Å A 1 1 A 2 1 ··· 1 An is denoted by A and r : A r RN denotes the vector valued
function whose i th component is r i , i.e., r(a) Å (r 1(a) , . . . , rn(a)) . We write (N , A ,
r) for short for (N ; (Ai)i√N ; (r i)i√N) . For any finite set B we denote by D(B) the set of
all probability distributions on B . For any player i and any n-person game G , we denote
by £

i(G) his individual rational payoff in the mixed extension of the game G , i.e., £ i(G)
Å min max r i(ai , s0i) where the max ranges over all pure strategies of Player i , and the
min ranges over all N" {i}-tuples of mixed strategies of the other players, and r i denotes
also the payoff to Player i in the mixed extension of the game. We denote by ui(G) the
individual rational payoff of Player i in pure strategies, i.e., ui(G) Å min max r i(ai , a0i)
where the max ranges over all pure strategies of Player i , and the min ranges over all
N" {i}-tuples of pure strategies of the other players. Obviously ui(G) ¢ £

i(G) . An
equilibrium of a strategic game (N , A , r) is an N-tuple of (mixed) strategies sÅ (s i)i√N ,
s i √ D(Ai) , such that for every i √ N and any strategy of Player i , t i √ Ai , r i(t i , s0i)
° r i (s i , s0i) . If s is an equilibrium, the vector payoff r(s) is called an equilibrium
payoff. For any game G in strategic form we denote by E(G) the set of all equilibrium
payoffs in the game G .

2.2. The finitely repeated game GT . Given an n-person game, G Å (N ; (Ai)i√N ;
(r i)i√N) , we define a new game in strategic form GT Å (N ; (S i(T ))i√N ; whichi(r ) )T i√N

models a sequence of T plays of G , called stages . After each stage, each player is informed
of what the others did at the previous stage, and he remembers what he himself did and
what he knew at previous stages. Thus, the information available to each player before
choosing his action at stage t is all past actions of the players in previous stages of the
game. Formally, let Ht , t Å 1, . . . , T , be the Cartesian product of A by itself t 0 1 times,
i.e., Ht Å At01 , with the common set theoretic identification A 0 Å {M}, and let H
Å Ht . A pure strategy s i of Player i in GT is a function s i : H r Ai . Obviously, HT<tÅ1

is a disjoint union of Ht , t Å 1, . . . , T and therefore one often defines : Ht r Ai as theis t

restriction of s i to Ht . We denote the set of all pure strategies of Player i in GT by S i(T ) .
The set of pure strategies of Player i in the infinitely repeated game G* is denoted S i .

Any N-tuple s Å (s1 , . . . , s n) √ 1i√N S i(T ) of pure strategies in GT induces a play
v(s) Å (v1(s) , . . . , vT(s)) defined by induction: v1(s) Å (s 1(M) , . . . , sn(M))
Å s(M) and vt(s) Å s(v1(s) , . . . , vt01(s)) or in other words Å s i (M) , andiv (s)1

Å s i(v1(s) , . . . , vt01(s)) Å . . . , vt01(s)) .i iv (s) s (v (s) ,t t 1

Set

r(v (s)) / ··· / r(v (s))1 Tr (s) Å .T T

Two strategies s i and t i of Player i in GT are equivalent if for every N" {i}-tuple of
pure strategies s0i Å (s j) j√N" {i } , vt(s i , s0i) Å vt(t i , s0i) for every 1 ° t ° T . The
equivalence classes of pure strategies are called reduced strategies .
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2.3. Finite automata. A finite automaton for Player i is a four-tuple »Mi , qi , f i , gi… ,
where Mi is a finite set, qi √ Mi , f i : Mi r Ai , and gi : Mi 1 A0i r Mi . The set Mi is the
set of possible states of the automaton, qi is the initial state, f i(q) is the action taken by
the automaton when in state q , and gi describes the transition of the automaton from state
to state; if at state q the other players choose the action tuple a0i , then the automaton’s
next state is gi(q , a0i ) . The size of the finite automaton is the number of states.

A finite automaton for Player i can be viewed as a prescription for Player i to choose
his actions in the various stages of the repeated game. The action to be taken at stage 1
is f i(qi ) . The action in stage 2 is f i (gi(qi , where is the actions taken by the0i 0ia )) a1 1

other players in stage 1. More generally, if we define inductively,

i i ig (q , b , . . . , b ) Å g (g (q , b , . . . , b ) , b ) ,1 t 1 t01 t

where bj √ A0i , the action prescribed by the automaton for Player i at stage t is f i(gi(qi ,
. . . , where 1° jõ t , is the N" {i}-tuple of actions at stage j . Therefore,01 0i 0ia , a )) a ,1 t01 j

any automaton a Å »Mi , qi , f i , gi… of Player i induces a strategy in GT that is givenisa

by

i i i i 0i 0is (a , . . . , a ) Å f (g (q , a , . . . , a )) .a 1 t01 1 t01

Note also that an automaton a of Player i induces also a strategy of Player i in theisa

infinitely repeated game G*. A strategy s i of Player i in G* (in GT ) is implemented by
the automaton a of Player i if s i is equivalent to i.e., if for every s0i √ 1jxiS

j (s0iis ,a

√ 1jxiS
j(T )) , v(s i , s0i) Å s0i ) .iv(s ,a

A finite sequence of actions (a1 , . . . , at ) and a pure strategy s i of Player i in G* are
compatible , if for every 1 ° s ° t , s i(a1 , . . . , as01) Å The set of all sequences ofia .s

actions of length n that are compatible with s i is denoted An(s i) . Given a strategy s i of
Player i in G*, any sequence of actions (a1 , . . . , at) , induces a strategy (s i

Éa1 , . . . , at)
in G*, by

i i(s Éa , . . . , a )(b , . . . , b ) Å s (a , . . . , a , b , . . . , b ) .1 t 1 s 1 t 1 s

Section 3 shows that the number of different reduced strategies that are induced by a
given pure strategy s i of Player i in G* and all s i-compatible sequences of actions equals
the size of the smallest automaton that implements s.

2.4. Finitely repeated games with finite automata. Given a game G in strategic form
and positive integers m1 , . . . , mn , we define S i(T , mi ) to be all pure strategies in S i(T )
that are induced by an automaton of size mi . Note that if a strategy is induced by an
automaton of size mi and ¢ mi then it is also induced by an automaton of sizem* m* .i i

The game GT(m1 , . . . , mn) is the strategic game (N ; (S i(T , mi ))i√N ; rT ) where rT here
is the restriction of our earlier payoff function rT to 1i√N S i(T , mi ) .

3. Automata and strategic complexity. We define in this section two measures of
complexity of strategies in the repeated game. One complexity measure is the size of the
smallest automaton that implements s, and the other one is the number of different reduced
strategies that are induced by a given pure strategy s i of Player i in G* and all s i-
compatible sequences of actions. It is proved that the two complexity measures coincide.
For an analog result for ‘‘exact automata’’ see Kalai (1990).

More precisely we define the first measure of complexity of a pure strategy s √ S i (or
s √ S i(T )) , comp1(s) , as the smallest size of an automaton that implements s i . The
second measure of complexity (of a pure strategy), comp2(s i) , is defined as the cardi-
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nality of the set of equivalence classes of {(s i
Éa1 , . . . , an)Én √ N0 and (a1 , . . . , an)

√ An(s i )}, where N0 is the set of nonnegative integers.
The measure of complexity comp2(s) is defined on S i , the strategies in the infinitely

repeated game. It has a natural extension to a measure of complexity for strategies in the
finitely repeated game GT ; let s Å √ S i(T ) , and defineT(s )t tÅ1

icomp (s) Å min{comp (t) : t √ S and ∀t , 1 ° t ° T , s Å t }.2 2 t t

PROPOSITION 1. For every pure strategy s i √ S i , or in S i(T ) ,

i icomp (s ) Å comp (s ) .1 2

PROOF. Let s i √ S i be implemented by the automaton »Mi , qi , f i , gi… . We will show
first that comp2(s i) ° ÉMi

É, where ÉMi
É is the number of elements in the set Mi . Let a

Å (a1 , . . . , an) and b Å (b1 , . . . , bk) be two plays that are compatible with s i , and such
that (s i

Éa) is not equivalent to (s i
Éb) . Then there is a play c Å (c1 , . . . , cp) that is

compatible with both (s i
Éa) and (s i

Éb) and such that (s i
Éa)(c1 , . . . , cp) x (s i

Éb)(c1 ,
. . . , cp) . Therefore,

i i 0i 0i 0i 0i i i 0i 0i 0i 0ig (q , a , . . . , a , c , . . . , c ) x g (q , b , . . . , b , c , . . . , c ) .1 n 1 p 1 k 1 p

As

i i 0i 0i 0i 0i i i i 0i 0i 0i 0ig (q , a , . . . , a , c , . . . , c ) Å g (g (q , a , . . . , a ) , c , . . . , c )1 n 1 p 1 n 1 p

and

i i 0i 0i 0i 0i i i i 0i 0i 0i 0ig (q , b , . . . , b , c , . . . , c ) Å g (g (q , b , . . . , b ) , c , . . . , c ) ,1 k 1 p 1 k 1 p

we deduce that

i i 0i 0i i i 0i 0ig (q , a , . . . , a ) x g (q , b , . . . , b ) .1 n 1 k

Thus, comp2(s i) ° ÉMi
É which implies that

i icomp (s ) ¢ comp (s ) .1 2

Let M be the set of equivalence classes of {(s i
Éa) : n √ N0 and a √ An(s i)}, and we

identify here a strategy with its equivalence class. Let qi Å s i , and for n √ N0 and a
Å (a1 , . . . , an) √ An(s i) ,

i i if (s Éa , . . . , a ) Å (s Éa , . . . , a ) ,1 n 1 n 1

and

i i 0i i i 0ig ((s Éa , . . . , a ) , a ) Å (s Éa , . . . , a , ( (s Éa , . . . , a ) , a )) .1 n 1 n 1 n 1

Then, s i is implemented by »M , qi , f i , gi… and thus we conclude that

i icomp (s ) ° comp (s ) ,1 2

which completes the proof of the proposition. h
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4. Automata and play complexity. We define in this section a complexity measure
for each player on plays (and on sets of plays) of the repeated game, and derive various
inequalities regarding the complexity of a play. The definitions and results in this section
are of independent interest and do serve as a good introduction to the more involved
complexity counting in the proof of our main result. Let G Å (N , A , r) be a strategic
game. A play of the repeated game is an element of the set At < A` . A finite ( infinite)`<tÅ1

play is an element of At (A`) . A strategy s i of Player i in G* is compatible with`<tÅ1

the infinite play (a1 , ···) , if for every positive integer t , the finite play (a1 , . . . , at) is
compatible with s i . Let v be a play. We define the i th player complexity of the play v,
comp i(v) , as the smallest complexity of a strategy s i of Player i which is compatible
with v, i.e.,

i icomp (v) Å inf{comp(s) : s √ S is compatible with v}.

LEMMA 1. Let a Å (a1 , . . . , at ) √ At . Then

icomp (a) ° t .

PROOF. The strategy s i of Player i which is implemented by the automaton »Mi , qi ,
f i , gi … where Mi Å {1, . . . , t}, qi Å 1, f i : Mi r Ai is given by f i(s) Å and gi(s , ∗)ia ,s

Å min(s / 1, t) is compatible with a Å (a1 , . . . , at) . h

If n and m are two positive integers, a Å (a1 , . . . , an) √ An and b Å (b1 , . . . , bm)
√ Am , then we denote by a / b the element of An/m that is defined by

a / b Å (a , . . . , a , b , . . . , b ) .1 n 1 m

LEMMA 2. Let a Å (a1 , . . . , at ) √ At and b Å (b1 , . . . , bs) √ As . Then

i i icomp (a / b) ¢ max(comp (a) , comp (b)) .

PROOF. Let s i be a strategy of Player i which is compatible with the play (a1 , . . . ,
at , b1 , . . . , bs) . Then s i is compatible with a and therefore comp i(a / b) ¢ comp i(a) .
On the other hand, (s i

Éa1 , . . . , at) is compatible with b and as comp(s i)¢ comp(s i
Éa1 ,

. . . , at) , comp i(a / b) ¢ comp i(b) . h

For a √ An and a positive integer d we define d ∗ a by induction on d : 1 ∗ a Å a and

(d / 1) ∗ a Å d ∗ a / a .

LEMMA 3. Let a Å (a1 , . . . , at ) √ At with a1 Å a2 Å ··· Å at01 and x Theni ia a .t01 t

icomp (a) Å t .

PROOF. By Lemma 1 comp i(a) ° t . Let s i be a strategy which is compatible with
a . Then the strategies s, (sÉa1) , . . . , (sÉa1 , . . . , at01) are t different strategies: for 0
° s õ q ° t 0 1,

i i i i(s És ∗ a )(( t 0 q 0 1) ∗ a ) Å a x a Å (s Éq ∗ a )(( t 0 q 0 1) ∗ a ) ,1 1 1 t 1 1

where t(0 ∗ a1) Å t1 and (tÉ0 ∗ a1) Å t. Thus the strategies (s i
És ∗ a1) , 0 ° s ° t 0

1, are t different strategies, and therefore comp i(a) ¢ t . h

For a √ An , b √ Ak and a positive integer s with min(n , k) ¢ s 0 1, we define a
Ås b if at Å bt for every t õ s .

The next lemma provides a lower bound for the complexity of a play which repeats d
times a play (of the form t ∗ a / b) and in which the actions of Player i initiate a deviation
from the periodic play.
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LEMMA 4. Let a Å (a1 , . . . , ak) √ Ak and b Å (b1 , . . . , bn) √ An with x ti ia b ,1 1

¢ 0 and d ¢ 1. Assume that v Å (v1 , . . . , vs) √ As with (d 0 1)( tk / n) / tk / 1
õ s ° (d / 1)( tk / n) and

i id ∗ ( t ∗ a / b) Å v and ((d / 1) ∗ ( t ∗ a / b)) x v .s s s

Then

icomp (v) ¢ d( t / 1).

PROOF. Let s i be a strategy which is compatible with v. Consider the set of strategies
{(s i

É j ∗ ( t ∗ a / b) / l ∗ a) : 0 ° j õ d and 0 ° l ° t}, i.e., the set of strategies
{(s i

Év1 , . . . , vj(tk/n )/lk)} (and where for j Å l Å 0 we mean by (s i
É j ∗ (a / b) / l ∗

a) or by (s i
Év1 , . . . , vj(tk/n )/lk) the strategy s i . If ( j , l) x ( j *, l *) then either l x l * and

without loss of generality l õ l *, and then (s i
É j ∗ ( t ∗ a / b) / l ∗ a)(( t 0 l *) ∗ a)

Å x Å (sÉ j * ∗ ( t ∗ a / b) / l * ∗ a)(( t 0 l *) ∗ a) or l Å l * and without loss ofi ia b1 1

generality j õ j *, and then

i(sÉ j ∗ ( t ∗ a / b) / l ∗ a)(v , . . . , v ) Å (d ∗ ( t ∗ a / b))j=(tk/n )/lk/1 s01 s

and

i(sÉ j* ∗ ( t ∗ a / b) / l ∗ a)(v , . . . , v ) Å v .j=(tk/n )/lk/1 s01 s

As x (d ∗ ( t ∗ a / the cardinality of this set of strategies is d( t / 1). Thereforei iv b)) ,s s

comp i(v) ¢ d( t / 1). h

Lemma 4 is of interest also for the special case when k Å 1. Elaboration on such
complexity counting (where k Å 1) appears later in the proof of the main result.

REMARK 1. The conclusion of Lemma 4 does not hold when replacing the assumption
x with the assumption a1 x b1 .i ia b1 1

Indeed, assume that there are two players, i Å 1, 2, and for each Player i , {0, 1} , Ai .
Consider the action pairs a Å (0, 0) and b Å (0, 1) . For any d √ N, the play v Å (v1 ,
. . . , vs) with s Å d( t / 1) / 1 and v Å d ∗ ( t ∗ a / b) / (1, 0) satisfies d ∗ ( t ∗ a /
b) Ås v and (d / 1) ∗ ( t ∗ a / x vs whileib) s

1comp (d ∗ ( t ∗ a / b) / (1, 0)) Å d / 1.

The complexity of the strategy of Player 1, which plays 0 as long as the number of past
action 1 is at most d and plays 1 otherwise, equals d / 1.

The next lemma provides a complexity lower bound for a play which departs from a
fully coordinated periodic play after completing a fixed given number of cycles. If f :
A 1 r A 2 is a 1 0 1 function and a Å (a1 , . . . , an) is a play with Å for every 12 1a f (a )t t

° t ° n we call the play a a coordinated play.

LEMMA 5. Let a Å (a1 , . . . , an) be a coordinated play , b √ A with b 1 x and d1a ,1

√ N. Then

1comp (d ∗ a / b) ¢ (d 0 1)n / 1.

PROOF. Assume that m ° n is the period of (d / 1) ∗ a . If m õ n , there is a play c
Å (c1 , . . . , cm) , a positive integer √ N and a play e , such that d ∗ a Å e / ∗ c , b 1

V Vd d
x and 0 1)m ¢ (d 0 1)n . It follows from Lemma 2 that we can assume without1

Vc , (d1
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loss of generality that m Å n is the period of (d / 1) ∗ a . Let v Å (v1 , . . . , vdn/1)
Å d ∗ a / b . Let s be a strategy of Player 1 which is compatible with v. If comp i(s)
õ (d 0 1)n / 1, there are two positive integers s and t with 1 ° s õ t ° (d 0 1)n / 1
such that

(sÉv , . . . , v ) Å (sÉv , . . . , v )1 s01 1 t01

where for s Å 1 the left-hand side of the above equality is s. As d ∗ a is a coordinated
play, it follows by induction on k that for every 0 ° k ° dn / 1 0 t , Å In1 1v v .s/k t/k

particular, setting k Å dn / 1 0 t , Å Å b 1 . As b 1 x it follows that t1 1 1v v as/dn/10t dn/1 1

0 s is not a multiple of n . On the other hand, it implies that

1 1 1 1(v , . . . , v ) Å (v , . . . , v )(1) s s/n01 t t/n01

As is n-periodic we may assume without loss of generality that (1) holds1 1(v , . . . , v )1 dn

for s ° n and t õ s / n . As d ∗ a is n-periodic, if s ú 1, Å Å1 i iv v vs01 s/n01 t/n01

Å and therefore (1) holds for s 0 1 and t 0 1 and thus without loss of generalityiv t01

we may assume that s Å 1 in (1) , and thus d ∗ a has a period of size t 0 s õ n . h

The lower bound in the previous lemma can be replaced with (d 0 1) ∗ n / 2 and this
is the best one possible. Indeed, if a Å (0, 0) / (n 0 1) ∗ (1, 1) then comp i(d ∗ a / (1,
1) Å (d 0 1)n / 2.

The next lemma provides a complexity lower bound for a play which departs from a
periodic play a after completing d cycles.

LEMMA 6. Let a Å (a1 , . . . , at ) be a play and d a positive integer . Let Bi , Ai be a
nonempty subset of the actions of Player i . Assume that k : Bi r N is such that for every
b i √ Bi there is s Å s(bi) õ t 0 k(bi) with as/1 Å ··· Å and bi Å i

ia as/k(b ) s/1

x Then comp i(a) ¢ k(ai) , and if v Å (v1 , . . . , vs) is a play with tdi
i i ia . (s/k(b )/1 a √B

õ s ° t(d / 1), (d / 1) ∗ a Å s v and ((d / x theni i1) ∗ a) vs s

i icomp (v) ¢ d k(a ) .∑
i ia √B

PROOF. Assume that s √ S i is compatible with v. For any bi , c i √ Bi , any two
positive integers m , n with s(bi) ° m õ s(bi) / k(bi) , s(c i) ° n õ s(c i) / k(c i) , and
0 ° q ° p õ d , if (bi , m , p) x (c i , n , q) , then

(sÉv , . . . , v ) x (sÉv , . . . , v ) .(2) 1 m/pt 1 n/qt

Indeed, if bi x c i then (m x n and)

i i(sÉv , . . . , v ) Å b x c Å (sÉv , . . . , v ) .1 m/pt 1 1 n/qt 1

If bi Å c i and m õ n ,

i i i(sÉv , . . . , v )((s(b ) / k(b ) 0 n) ∗ a ) Å b1 m/pt m

and

i i i
i i(sÉv , . . . , v )((s(b ) / k(b ) 0 n) ∗ a ) Å a .1 n/qt m s (b )/k(b )/1

As x bi , (2) follows.i
i ia s (b )/k(b )/1

If bi Å c i , and m Å n and 0 ° p õ q õ d ,
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i(sÉv , . . . , v )(v ···, v ) Å ((d / 1) ∗ a)1 m/pt m/pt/1 s0t(q0p)01 s

and

i(sÉv , . . . , v )(v ···, v ) Å v .1 n/qt m/qt/1 s01 s

As (vm/pt/1···, vs0t(q0p )01) Å (vm/qt/1···, vs01) and ((d / x (2) follows.i i1) ∗ a) v ,s s

Finally, observe that the number of triples (bi , m , p) with bi √ Bi , s(bi) ° m õ s(bi)
/ k(bi) and 0 ° q õ d equals d k(ai) . hi i(a √B

A set of plays Q is conforming for Player i if for all (a1 , . . . , at , b1 , ···) and (a1 , . . . ,
at , c1 , ···) in Q ,

i ib Å c .1 1

A pure strategy s i of Player i is conformable to Q if it is compatible with any v √ Q .
Notice that a set of plays Q is conforming for Player i if and only if there is a pure strategy
of Player i that is conformable to Q . The i th player complexity of a set of plays Q that
is conforming for Player i is defined as the smallest complexity of a strategy s i of Player
i that is conformable to Q , i.e.,

i i icomp (Q) Å inf{comp (s) : s √ S is conformable to Q}.

In what follows, we discuss the complexity of some special class of sets of plays. We
hope that these remarks will help the reader in following the corresponding parts in the
proofs.

Consider an arbitrary 2-player game G with two actions for each player labeled 0 and
1. Let E be a set of sequences of zeroes and ones of length k and such that for every e
Å (e1 , . . . , ek) √ E and 1 ° i õ k , (e1 , . . . , ei , 0, . . . , 0) √ E .

Assume that for every e √ E , g(e) is a play of length k1 ú k with Å 0 for every1g (e)t

1 ° t ° k1 and Å et for every 1 ° t ° k . We associate with every injective (12g (e)t

0 1) function b from E to the set of coordinated plays of length k2 a set Q of plays of
the repeated game, and we comment on its complexity.

Fix positive integers l ú k1 / k2 and d ¢ 2. What is the complexity of Player 1 of the
set

Q Å {g(e) / d ∗ (( l 0 k ) ∗ (0, 0) / b(e))Ée √ E}.2

A simple upper bound for comp1(Q) is ÉEÉ(k1 / l) where ÉEÉ is the number of elements
of E . If Å 1 for every e √ E , then, comp1(Q) ° ÉEÉl . Indeed, let M Å E 1 {1, 2,2e k1

. . . , l } be the set of states of an automaton of Player 1, and the initial state of the
automaton is (e*, p)) , where p õ l 0 k1 0 k2 and e* Å (0, . . . , 0) √ E . The action
function f : M r A 1 is defined by f (e, i) Å 0 if 1 ° i ° l 0 k2 and f (e, i) Å 1b (e)i/k 0l2

if l 0 k2 õ i ° l . Finally the transition function g : M 1 A 2 r M obeys: g((e, i) , f (e, i))
equals (e, i / 1) if 1 ° i õ l and it equals (e, 1) if i Å l . This ensures that once the
automaton is at state (e, 1) it follows the loop ( l 0 k2) ∗ (0, 0) / b(e) as long as Player
2 follows the loop. The strategy of Player 1 that is induced by the automaton »M , (e*,
p) , f , g … is compatible with any play in Q whenever g((e*, p) , . . . ,2 2g (e) , g (e))1 k1

Å (e, 1) for every e √ E . There are many transition functions with the above property.
If, in addition, Å (1, 1) for every e √ E , the complexity of Player 1 of the set ofb (e)k2

plays Q equals lÉEÉ.



521FINITELY REPEATED GAMES WITH FINITE AUTOMATA

/ 3906 0004 Mp 521 Monday Nov 02 03:26 PM INF–MOR 0004

5. Statements of the main results. The main results of the present paper address the
asymptotic behavior of the sets of equilibrium payoffs, E (GT(m1 , m2)) , of the two player
games GT(m1 , m2) as T , m1 and m2 go to ` . All convergence of sets is with respect to
the Hausdorff topology. The main result will follow from theorems which provide con-
ditions on a list of variables:

a feasible payoff x √ co(r( A)) ,
a positive constant e ú 0,
the number of repetitions T , and
the bounds of the automata sizes, m1 and m2 ,

that guarantee the existence of an equilibrium payoff y of the game GT(m1 , m2) that is e-
close to x . One of the conditions will ensure that a payoff in a sufficiently small neigh-
borhood of x is generated by strategies that are implemented by automata of sizes which
are less than m1 and m2 . This condition is stated by means of the inequalities mi ¢ m0

where m0 is sufficiently large. Another condition requires the bounds of one or both
automata sizes to be subexponential in the number of repetitions, i.e., a condition that
asserts that ( log mi ) /T is sufficiently small. Theorems 1 and 2 require a subexponential
(as a function of T ) bound of min(m1 , m2) while Theorems 3 and the main theorem
require a subexponential bound of max(m1 , m2) (as a function of min(T , min(m1 , m2))) .

THEOREM 1. Let G Å ({1, 2}, A , r) be a two person game in strategic form . Then
for every « ú 0 sufficiently small , there are positive integers T0 and m0 , such that if T
¢ T0 , and x √ co(r( A)) with x 1 ú u 1(G) , and x 2 ú u 2(G) , and

3m ° min(m , m ) ° exp(« T ) ,0 1 2

then there is y √ E(GT(m1 , m2)) with

i i
Éy 0 x É õ «.

Special cases of the above theorem have been stated in previous publications. Neyman
(1985) states that in the case of the finitely repeated prisoner’s dilemma G , for any positive
integer k , there is T0 such that if T ¢ T0 and T1/k ° min(m1 , m2) ° max(m1 , m2) ° Tk ,
then there is a mixed strategy equilibrium of GT(m1 , m2) in which the payoff is 1/k-close
to the ‘‘cooperative’’ payoff of G . Papadimitriou and Yannakakis (1994) state the special
case of Theorem 1 for games with rational payoffs and payoff vectors x in r( A) . They
also state a result for a subset of co(r( A)) with the additional assumption that the bounds
on both automata are subexponential in the number of repetitions. The sketched proof in
Papadimitriou and Yannakakis (1994) is, however, incomplete; it is tailored for the spe-
cific prisoner’s dilemma depicted in the introduction, and assumes that m1 Å m2 . The
detailed proofs appearing in Papadimitriou and Yannakakis (1995, 1996) also have gaps,
and we do not see how this line of proof can be validated for general integer payoff
matrices that are ordinally equivalent to the prisoner’s dilemma. For details, see §6.3.
Other related results include Megiddo and Wigderson (1986) and Zemel (1989).

The conclusion of Theorem 1 fails if we replace in the assumptions of the theorem the
strict inequality x 1 ú u 1(G) by the weak inequality x 1 ¢ u 1(G) . For example, in the
game
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the only equilibrium payoff in GT(m1 , m2) with m2 ¢ 2T 0 1 is (1, 1) . Indeed, if (s, t)
is an equilibrium of GT(m1 , m2) , t) ¢ 1, and therefore for every 1 ° t ° T ,1r (s,T

t) Å 1 with probability (with respect to the probability on plays induced by the1r (s,t

mixed strategy pair (s, t )) 1. If t) ú 1, let S , 1 ° S ° T , be the largest positive2r (s,T

integer t ° T such that with positive probability r(vt(s, t)) Å (1, 3) . It follows that for
S õ t ° T , r 2(vt(s, t)) ° 1. Therefore, if t* is the strategy of Player 2 which coincides
with the strategy t up to stage S 0 1, and for t ¢ S plays Left, t*) ú t) .2 2r (s, r (s,T T

As S 2(T , 2T 0 1) Å S 2(T , `) , the result follows. However, the theorem remains intact
if we replace the assumption x 1 ú u 1(G) with the weak inequality x 1 ¢ u 1(G) , and in
addition we assume that there is a vector payoff y √ co(r( A)) with y i ú ui(G) , i
Å 1, 2.

The next theorem is obviously a generalization of Theorem 1. We do state both theo-
rems because we believe that Theorem 1 is of independent interest and its proof avoids a
few complications that arise in the proof of Theorem 2. Also a first reading of the proof
of Theorem 1 will help in the reading of the proof of Theorem 2. For simplicity, the
statements of the next two theorems are nonsymmetric with respect to the two players.

THEOREM 2. Let G Å ({1, 2}, A , r) be a two person game in strategic form . Then
for every « ú 0 sufficiently small , there are positive integers T0 and m0 , such that if T
¢ T0 and x √ co(r( A)) with x 1 ú £

1(G) , and x 2 ú u 2(G) , and

3m ° m ° min(m , exp(« T )) ,0 1 2

there is y √ E(GT(m1 , m2)) with

i i
Éy 0 x É õ «.

THEOREM 3. Let G Å ({1, 2}, A , r) be a two person game in strategic form . Then
for every « ú 0 sufficiently small , there are positive integers m0 and T0 such that if T
¢ T0 and x is a point in co(r( A)) with x i ¢ £

i(G ) , and

3m ° m ° m ° exp(« min(T , m )) ,0 1 2 1

then there is y √ E(GT(m1 , m2)) with

i i
Éy 0 x É õ e.

The equilibrium strategies in Theorems 2 and 3 are robust in the following sense.
Assume that, in addition to the assumptions (on G , e, T , x , m1 and m2) in each theorem,
there are action pairs a Å (a 1 , a 2) √ A and (a 1 , b 2) √ A , such that r 2(a 1 , b 2) ú r 2(a 1 ,
c 2) whenever b 2 x c 2 , and r 2(a)ú £

2(G) . Then there is a strategy pair (s, t) in GT(m1 ,
m2) , with

i i
Ér (s, t) 0 x É õ «T

which is an equilibrium of HT(m1 , m2) for every two person game H with payoffs that
are within « of the payoffs in G .

We are ready now to state our main theorem, which relates the equilibrium payoffs of
GT(m1 , m2) to the equilibrium payoffs of the undiscounted infinitely repeated game

Recall that the Folk Theorem asserts thatG*.`

1 1 2 2E(G*) Å {x √ co(r( A))Éx ¢ £ (G) and x ¢ £ (G)}.`



523FINITELY REPEATED GAMES WITH FINITE AUTOMATA

/ 3906 0004 Mp 523 Monday Nov 02 03:26 PM INF–MOR 0004

MAIN THEOREM. Let G Å ({1, 2}, A , r) be a two person game in strategic form ,
and let (T , m1(T ) , be a sequence of triples of positive integers with miniÅ1,2

`m (T ))2 TÅ1

mi (T ) r ` as T r ` , and

log max m (T )iÅ1,2 ilim Å 0.
min(m (T ) , m (T ) , T )Tr` 1 2

Then ,

Tlim E(G (m (T ) , m (T ))) Å E(G*).1 2 `
Tr`

The inequality m2 ° exp(e 3m1) in Theorem 3, could probably be replaced with an
alternative lower bound, as a function of T , on m1 , provided that we also replace the weak
inequality x 1 ¢ £

1(G) with the strict inequality x 1 ú £
1(G) .

CONJECTURE 1. Let G Å ({1, 2}, A , r) be a two person game in strategic form . Then
for every e ú 0 sufficiently small , there is a positive integer T0 such that if T ¢ T0 and x
is a point in co(r( A)) with x i ú £

i(G ) , and

3«T ° m ° min(m , exp(« T )) ,1 2

then there is y √ E(GT(m1 , m2)) with

i i
Éy 0 x É õ «.

The next theorem is straightforward and very easy. We state it as a contrast to the
previous results. It shows that the subexponential bounds on the sizes of the automata as
a function of the number of repetitions is essential to obtain equilibrium payoffs that differ
from those of the finitely repeated game GT .

THEOREM 4. For every game G in strategic form there exists a constant c such that
if mi ¢ exp(cT ) ∀i then

T TE(G (m , . . . , m )) Å E(G ) .1 n

6. Preliminaries.

6.1. Notation. Let G Å (N ; A ; r) be an N-player game in strategic form. We denote
by K(G) or K , for short, twice the largest absolute value of a payoff in the game G . Thus
r i (a) 0 r i(b)° K(G) for every a and b in A . We denote by R the vector valued function
defined on all finite plays as the average payoff, i.e., for a Å (a1 , . . . , an) √ An ,

r(a ) / ··· / r(a )1 nR(a) Å R((a , . . . , a )) Å .1 n n

The integer part of a real number x is denoted [x] , i.e., [x] is the largest integer that is
less than or equal to x . The length n of a play c Å (c1 , . . . , cn) √ An is denoted ÉcÉ. The
number of elements in a set X is denoted ÉXÉ. Given two sets of real numbers X and Y ,
X / Y Å {x / yÉx √ X , y √ Y }.

There are several constructions and functions that are used repeatedly in our proofs.
Therefore, we introduce here several of these as general notations. Given two positive
integers m1 and l , we define the nonnegative integer k(m1 , l) as the smallest nonnegative
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integer k such that 2 kl ú m1 0 l . The set Q(m1 , l) is defined as a subset Q of
{0, satisfying:k(m ,l)11}

Q . {(e , . . . , e , 0) : e √ {0, 1}} (1, . . . , 1) /√ Q1 k01 i

ÉQÉ Å [(m 0 l) / l] .1

Note that the definition of k Å k(m1 , l) implies that 2 k01l ° (m1 0 l) õ 2 kl , and thus
2 k01 ° [(m1 0 l) / l] õ 2 k . Therefore, such a subset Q of {0, 1} k exists. Note also that
for every (e1 , . . . , ek)√ Q , ei õ k . In the constructed equilibrium, ÉQÉ is the numberk( iÅ1

of possible proposed plays, 2k is the duration of the communication phase, and l is the
length of the cycle following the communication phase. The role of the first two properties
of Q is to simplify the description of the proposed play.

In each of the constructed equilibria two actions of each player are labeled 0 and 1. To
each e √ Q we will associate two plays of length 2k : the communication play ) andUu(e
the verification play u*(e) .

6.2 The idea of the proofs of the main results.

(a) for the Prisoner’s Dilemma and m1 õ T .
We outline the proof in a few special cases where G is the Prisoner’s Dilemma given

in the introduction. We consider first two instances in which the payoff vector is x Å (3,
3) . We exhibit a pure strategy equilibrium (s, t ) of GT(m1 , m2) where 2 ° m1 ° m2

õ T , resulting in a payoff of 3 for each player in each stage. Label the Friendly action
by 0, and the Unfriendly action by 1. For any play v Å (v1 , . . . , vT ) let sv and tv be
the strategies that follow the play v as long as the other player follows it, and switch to
punishing forever as soon as a deviation from the proposed play is observed. Notice that
v is the outcome of the strategy pair (sv , tv) . Now let v Å T ∗ (0, 0) . The only play
with average payoff greater than 3 to Player 2 that is compatible with the strategy sv is
(T 0 1) ∗ (0, 0) / (0, 1) . By Lemma 3 such a play requires a strategy with complexity
at least T . Obviously, sv √ S 1(2) , S 1(m1) and tv √ S 2(m2) and thus (sv , tv) is an
equilibrium of GT(m1 , m2) with outcome v.

Now fix d with 0 õ d õ 1. Let T be sufficiently large, m1 ° m2 , and m1 õ dT . We
now construct a play v with average payoff within e of the friendly payoff (3, 3) such
that the pure strategy pair (sv , tv) is an equilibrium of GT(m1 , m2) . Choose an integer
d sufficiently large that R(d ∗ (0, 0) / (1, 0) / (0, 1)) is within « /2 of (3, 3) Å r(0,
0) and that [(T 0 1)/(d / 2)](d / 1) ú dT . Let v be the d / 2 periodic play of GT

where the last string of d / 2 actions is d ∗ (0, 0) / (1, 0) / (0, 1) . For T sufficiently
large R(v) is within e of x . The strategy pair, sv of Player 1 and tv of Player 2, is an
equilibrium of GT(m1 , m2) . Indeed, the complexity of each of these strategies is no more
than d / 3 ° m1 ° m2 , implying that sv √ S 1(T , m1) and tv √ S 2(T , m1) . No other
play which is compatible with sv results in a higher payoff to Player 2. And the only play
u with R 1(u) ú R 1(v) that is compatible with tv is (v1 , . . . , vT01 , (1, 1)) , which by
Lemma 4 has complexity for Player 1 at least [(T 0 1)/(d / 2)](d / 1) ú dT . Thus
any strategy of Player 1 that does better than sv is not in S 1(T , m1) , and so the strategy
pair (sv , tv) is an equilibrium of GT(m1 , m2) .

The role of the action pair (0, 1) at the end of the cycle together with the synchronization
of the play so that vT Å (0, 1) is to ensure that Player 2 has no desire to deviate. The role
of the action pair (1, 0) following each d plays of the action pair (0, 0) is to ensure that
any strategy of Player 1 that follows the play v up to close to the end and then deviates
is sufficiently complex, as illustrated in Lemma 4 and Remark 1. For example, the play
vÅ 1000 ∗ (4 ∗ (0, 0)/ (0, 1)) is not an equilibrium play of the 5,000 repeated prisoners’
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dilemma for m1 Å 1003. Consider the strategy of Player 1 implemented by an automaton
with 1003 states: one absorbing state in which the Unfriendly action is played and 1002
states in which the Friendly action is taken. The automaton starts in state one and until
state 999 moves to the next state whenever the other player plays the unfriendly action
and stays in its present state if the other player plays the friendly action. For states 1000
to 1002 the automaton moves to the next state whatever the other player does. Against
any strategy of Player 2 consistent with v this strategy of Player 1 follows the play v up
to stage 4998 and plays the unfriendly action in the last 2 stages of the game, which is
better for Player 1 than v.

(b) for general games and m1 õ T /4.
Now consider an arbitrary game G and suppose that m1 õ T/4. For any vector payoff x

√ co r( A) with xi ú ui(G) we will construct a d-periodic play v with a corresponding payoff
of approximately x. Further, the play v is such that the strategy tv is a best reply to sv among
all strategies of Player 2, and sv is a best reply to tv among all strategies in S1(T, m1).

We start by constructing the cycle c Å d1 ∗ a1 / b1 / d2 ∗ a2 / b2 / d3 ∗ a3 / b3 / d4

∗ a4 with r 2(a1) ° r 2(a2)° r 2(a3)° r 2(a4) Å maxa√A r 2(a) , d4 sufficiently large, R(c)
is approximately x , and di /ÉcÉ ú . Two of the terms bi are the empty string. The13max iÅ1 4

bi following the longest string di ∗ ai , 1 ° i ° 3, is an action pair with x The1 1b a .i i

play v is the periodic play of c such that the play of the last ÉcÉ stages is c . The cycle,
and thus also the play ends with a string d4 ∗ a4 . Since r 2(a1) ° r 2(a2) ° r 2(a3) this
implies that tv is a best reply to sv . Indeed, except for one stage in the cycle the payoffs
of Player 2 increase through the cycle. The value of d4 is sufficiently large that the con-
tribution of this stage is negligible and that any one stage gain from deviation before the
last d4 stages is offset by the loss in the remaining stages. The role of the action pairs bi ,
1 ° i ° 3, is to ensure that the complexity of a strategy of Player 1 that deviates from
the proposed play after completing k cycles c , is at least k max1°i°3 di . As any play u
with R 1(u) ú R 1(v) that is compatible with tv , coincides with v in all but the few very
last stages we conclude that indeed r 1(sv , tv) ¢ r 1(s, tv) for any s √ S 1(T , m1) .

So far we have described instances of cases in which we were able to describe a pure
strategy equilibrium of GT(m1 , m2) . For sufficiently large mi , S i (T , mi ) Å S i(T ) , and
so all equilibrium payoffs of GT(m1 , m2) are equilibrium payoffs of GT . For pure strategy
equilibria significantly smaller bounds on mi suffice: if m1 and m2 are both at least T , any
pure strategy equilibrium payoff of the repeated prisoner’s dilemma results in repeated
play of the unfriendly actions.

(c) for mi ¢ T /4.
When mi ¢ T /4 we will construct mixed strategy equilibria. We now describe the

outline of the proof in case that m1 ú T /4 and m2 ú T .
For any subset of plays Q , AT , let tQ be the mixed strategy of Player 2 that is a

mixture of the pure strategies tv , v √ Q , each equally likely. Recall that a set of plays
Q is conforming for Player 1 if the actions of Player 1 at each stage are functions of past
actions, i.e., for any two plays v, u √ Q and any 1 ° t ° T , Å whenever (v1 , . . . ,1 1u vt t

vt01) Å (u1 , . . . , ut01) . A pure strategy s of Player 1 is conformable to Q if and only if
for every v √ Q the outcome of the strategy pair (s, tv) is v. For any set of plays Q that
is conforming to Player 1, there is a pure strategy of Player 1 that is conformable to Q .

The equilibrium strategy of Player 2 is a mixed strategy of the form tQ where Q is a
set of plays that is conforming for Player 1. The equilibrium strategy of Player 1, s*, is
a mixture of strategies that are conformable to Q . The play v that is selected by tQ via
the realization tv is called the proposed play. We will construct the set Q so that the
number of plays in Q is at least 2 k01 and less than 2 k (where the value k depends on the
parameters m1 and T ) . Therefore we rename the set of the possible proposed plays and
identify each play with a sequence eÅ (e1 , . . . , ek) of zeros and ones. We use the notation
v(e) Å (v1(e) , . . . , vT(e)) for the proposed play associated with e, and te for tv(e) .
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The action of Player 1 at stage 1° t° k in the proposed plays v(e)√ Q is independent
of e and the sequence of actions of Player 2 in the first k stages of the game identifies the
proposed play v(e) . This implies that Q is conforming for Player 1.

We interpret the actions of Player 2 in the first k stages of the game as a signal that
Player 2 sends to Player 1. The signal specifies one of finitely many plays of the repeated
game. Each player follows the proposed play as long as the other player follows it, and
switches to punishing the other player as soon as he detects a deviation from the proposed
play. The strategy of Player 2 detects immediately any deviation by Player 1 from the
proposed play.

Each one of the proposed plays enters a cycle of action pairs with associated payoff
approximately x . Thus, in any one of the proposed plays, Player 1 has no incentive to
deviate prior to the very last stages of the finitely repeated game. The set of possible
proposed plays is such that Player 1 is unable to follow each one of the proposed plays
and deviate in even one of them at the very late stages of the finitely repeated game.

There are several properties that need to be satisfied in order to construct such an
equilibrium. The resulting expected payoff needs to be approximately the fixed payoff
vector x . This will be achieved by each one of the proposed plays separately, by playing
in most stages a cycle of action pairs where the average payoff over the cycle is approx-
imately x . (When x Å r(a) , a √ A , most of the action pairs in the cycle will be a .)

As Player 2 specifies the proposed play, the payoff to Player 2 needs to be independent
of the proposed play. This will be accomplished by Player 2 sending his signal during the
first k stages of the repeated game, using two actions, say 0 and 1. The next k stages are
used to balance the number of times that each one of these two actions of Player 2 appears
in the first 2k stages, i.e., ensuring that each one of them appears exactly k times. Player
1 plays a fixed action, say 0 during the first 2k stages. We refer to the first 2k stages as
the communication phase. Following the communication phase the play will enter one of
finitely many possible cycles where the number of times each action pair appears in the
different cycles is constant and moreover, the leftovers needed to complete the full play
are independent of the proposed play.

Many simplifications of the ideas result by assuming x Å r(a) √ r( A) rather than x
√ co r( A) . Label the action pair aÅ (a 1 , a 2) by (0, 0) and the action pair of the punishing
strategies (1, 1) . Following the communication phase (of length 2k) in which Player 2
transmits a message e √ Q to Player 1 (during the first k stages) , the play enters a cycle
c(e) , which is a coordinated play. The length of the coordinated play, Éc(e)É, is inde-
pendent of e and Éc(e)É @ 2k . Most of the action pairs in the coordinated play c(e) are
(0, 0) . However, the last 2k stages of the coordinated play c(e) depend on e. This part is
called the verification play (and is denoted u*(e)) .

The set of messages Q and the corresponding verification play are such that an auto-
maton of Player 1 which wishes to follow each one of the proposed cycles for at least
two rounds can not use the same states in different cycles (corresponding to different
messages) and moreover, it needs ÉcÉ different states for each cycle. We thus fill up his
capacity by generating enough messages so that m1 0 ÉQÉÉcÉ is sufficiently small (no
more than ÉcÉ) preventing him from selecting even just one proposed play and being able
to deviate in the last stage in that play while repeating the cycle in all other proposed
plays. One needs further to choose the set of proposed plays so that Player 1 is unable to
increase his own payoff by neglecting a subset of messages and using the freed upon
states for sufficient gain in the late stages of the game. We label the automaton states used
in playing the coordinated cycle c(e) by (e, 1) , . . . , (e, ÉcÉ) .

Player 1 also has to process the message sent during the communication phase, and for
that it might seem that an additional number of about ÉQÉ states is needed. However, the
constructed equilibrium is such that he uses the very same states used to follow the
different cycles.
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An additional problem arises. If a state of the automaton of Player 1 is used both in
one of the cycles as well as in the communication phase, it may have to tolerate the two
actions 0 and 1 of Player 2. Therefore, there are deviations by Player 2 from the set of
plays Q that are left unpunished. Such deviations can start during the communication
phase, e.g., Player 2 can choose the action 0 at a stage during the communication phase
that dictates to Player 2 the action 1. Or, they can start after completing the communication
phase during a play of a cycle, by taking the action 1 instead of 0 at a stage in which the
state of the automaton of Player 1 tolerates both actions 0 and 1 of Player 2. Therefore,
if Player 2 knows an exact stage in one of the cycles in which the state of the automaton
of Player 1 tolerates the two actions 0 and 1, he may take advantage over it in future
stages of the game. Moreover, the availability of undetectable deviations by Player 2 may
alter his indifference among the various plays in Q . Thus the mixed strategy of Player 1
conceals the exact states that tolerate both actions, 0 and 1. But how can the play enter
now the coordinated play; after all, Player 2 has to be informed of the time Player 1 enters
the start of the verification play. This is accomplished by ensuring that the communication
phase ends with an action pair (0, 1) in a state of the automaton which is reused in the
coordinated cycle for a (0, 0) action pair, and the transition function of the automaton of
Player 1 will change the automaton state to (e, 1) . The above discussion indicates one
role of a mixed strategy of Player 1 in our constructed equilibrium.

Additional caution is needed here. Player 1 needs also to verify that Player 2 does
indeed balance his two actions 0 and 1 during the first 2k stages of the repeated game.
Otherwise, as Player 2 may prefer the action pair (0, 0) to the action pair (0, 1) he may
choose to play the action 0 rather than 1 in some stages t with k / 1 ° t ° 2k . Such a
deviation by Player 2 has a negligible effect on the total payoff but may not leave Player
2 indifferent to the different proposed plays. The states of the automaton of Player 1 that
are used in stages t Å k / 1, . . . , 2k are also used at later stages of the repeated game
(during the cycle play) for the action pair (0, 0) . How can Player 1 verify that Player 2
does indeed balance his two actions in the first 2k stages of the repeated game? The
automaton transition function is such that if Player 2 takes action 0 when in a reused state
(e, j) , the next state of the automaton is (e, j / 1) as expected in the course of the cycle
play. The different pure strategies in the support of the equilibrium (mixed) strategy of
Player 1 react differently in the reused states to the action 1 of Player 2. Player 2 is
uncertain about the pure strategy realization, and therefore if Player 2 deviates from the
proposed play at one of the stages t Å k / 1, . . . , 2k he will not know when to start with
the verification play. The above discussion indicates a second role of a mixed strategy of
Player 1 in our constructed equilibrium.

Player 1 may have an incentive to accept only a subset of the proposed plays. This can
happen if the number of the proposed plays is large and by neglecting o(T ) proposed plays
he is able to follow most other proposed plays up to stage T and deviate at stage T . This is
excluded by our construction, by requiring Player 1 to report periodically the proposed play.

6.3. An alternative idea of a proof. Papadimitriou and Yannakakis (1995, 1996) pro-
posed a different line of proof for games with integer payoffs and vector payoffs x in r( A).

Consider the prisoner’s dilemma depicted in the following figure:

Denote by g Å (g 1 , g 2) the vector payoff function of this game. We describe in what
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follows the ‘‘equilibrium’’ strategies and equilibrium play (proposed in Papadimitriou
and Yannakakis 1995, 1996) of the T-stage repetition of this game where Player 1 is
restricted to automata of size m1 (úT 2) and Player 2 is restricted to automata of size m2

¢ m1 with a payoff vector that is close to g(C , C) Å (7, 7) .
Our discussed communication phase is replaced in Papadimitriou and Yannakakis with

two phases: the business card exchange phase and the fixup phase. The first d stages are
called (by Papadimitriou and Yannakakis) the business card exchange phase. Player 2
transmits his business card, y √ {C , D} d , (by playing at stage 1 ° t ° d the action yt , )
to Player 1, who plays the (same pure) action C through this phase. All business cards
of Player 2 are equally likely.

The quotes in the following paragraph are from Papadimitriou and Yannakakis (1996).
The second phase, called (by Papadimitriou and Yannakakis) the fixup phase, ‘‘has the
purpose of equalizing the value of the different business cards; it consists of one random
step by both players, followed by a sequence of deterministic coordinated moves by the
two players that balance the payoffs.’’ The coordinated moves in their proof are (C , C)
and (D , D) . (‘‘In the first step the two players choose randomly, but possibly with dif-
ferent probabilities, among two (distinct) strategies, which we shall still call C and D . . .
Then they go on to play for L more steps using only two strategy pairs, which we call
(A , B) , (A *, B*) ; . . . The only requirement is that the quantities DÅ g 2(A , B)0 g 2(A*,
B*) and D* Å g 1(A , B) 0 g 1(A*, B*) are both nonzero.’’ Thus we may assume that A
Å A* Å C and B Å B* Å D .) ‘‘The number of AB ( i.e., (C , C)) steps they play, is
determined by the outcome of the random step: If Player 1 played C and Player 2 also C ,
then it is x1 ; if the combination was C , D then x2 ; if D , C , then x3 ; and if D , D ,
then x4 .’’

Thus, the fixup phase last for L / 1 stages and is parametrized by a vector x Å (x1 ,
. . . , x4) (which depends on past actions) with max xi ° L .
Let

2 2D Å g (C , C) 0 g (D , D) .

In the first stage of the fixup phase, Player 1 (Player 2) plays C with probability p Å p(x)
(q Å q(x)) . In the next L stages of the fixup phase the players play a deterministic
sequence of coordinated action pairs. If the random action pair in the first stage of the
fixup phase is (C , C) they play x1 ∗ (C , C) / (L 0 x1) ∗ (D , D) ; if the action pair was
(C , D) then x2 ∗ (C , C) / (L 0 x2) ∗ (D , D ) ; if the action pair was (D , C) then x3

∗ (C , C) / (L 0 x3) ∗ (D , D ) ; and if the action pair was (D , D) then x4 ∗ (C , C) / (L
0 x4) ∗ (D , D) . Recall that xi are integers.

Player 2 is indifferent about his two possible actions in the first stage of the fixup phase
only if

2 2px D / pg (C , C) / (1 0 p)x D / (1 0 p)g (D , C)1 3

equals

2 2px D / pg (C , D) / (1 0 p)x D / (1 0 p)g (D , D) .2 4

Setting

2 2a(x) Å (x 0 x )D / g (D , D) 0 g (D , C) and4 3

2 2b(x) Å (x 0 x )D / g (C , C) 0 g (C , D) ,1 2

Player 2 is indifferent only if
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a(x)
p(x) Å .

a(x) / b(x)

Let F(x) denote the sum of the payoffs to player 2 in the fixup phase, and G(x) Å F(x)
0 Lg2(D , D) . We write next the expression for G(x) and G(y) for two possible values
of the vectors x Å (x1 , . . . , x4) and y Å (y1 , . . . , y4) .

2 2a(x)x D b(x)x D a(x)g (C , C) b(x)g (D , C)1 3G(x) Å / / /
a(x) / b(x) a(x) / b(x) a(x) / b(x) a(x) / b(x)

and

2 2a(y)y D b(y)y D a(y)g (C , C) b(y)g (D , C)1 3G(y) Å / / / .
a(y) / b(y) a(y) / b(y) a(y) / b(y) a(y) / b(y)

Let B Å g 2(C , C) / g 2(D , D) 0 g 2(C , D) 0 g 2(D , C) . Notice that for every integer
vector x , a(x)/ b(x)Å B(mod D) and that a(x)Å a(y)(mod D) and b(x)Å b(y)(mod
D) . Therefore

ND
F(x) 0 F(y) Å G(x) 0 G(y) Å 2MD / B

where N and M are integers. Therefore if the imbalance in the first phase of the game is
s and sB 2 is not a multiple of D, there are no integer values of the vectors x and y with
F(x) 0 F (y) Å s .

6.4. Zero-sum games with finite automata. In this section we present results about
the value of 2-person 0-sum repeated games with finite automata. The first result follows
from the proof of the result of Ben-Porath (1993), and is used in our proof of Theorems
2 and 3. In all that follows in this section we denote by G a fixed 2-person 0-sum game,
and for a 2-person 0-sum game, H , we denote by Val(H) its minimax value.

THEOREM 5. Let d ú 0. For every « ú 0 sufficiently small , if

2/dexp(« m ) ¢ m ú 1,1 2

then for every positive integer T ,

TVal(G (m , m )) ¢ Val(G) 0 «.1 2

The next result asserts that if the bound on the sizes of the automata of Player 2 is
larger than an exponential of the size of the automata of Player 1, then Player 2 could
hold Player 1 down to his maxmin in pure strategies.

THEOREM 6. For every Kú ÉA 1
É, m1 and e ú 0, there exist a positive integer T0 and

a strategy t* √ D(S 2(m2)) where m2 ¢ Km1 , such that for every T ¢ T0 , and any
strategy s √ S 2(m1) ,

T 1 1 1 2Val(G (m , m )) ° r (s, t*) ° max min r (a , a ) / e.1 2 T
1 1 2 2a √A a √A

PROOF. The proof is given here for completeness; it is given also in Neyman (1997).
Without loss of generality we assume that G Å ({1, 2}, A , r) is a 2-player 0-sum game.
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The idea of the proof is as follows: there is a subset T , S 2(m1) with ÉTÉ Å 1 m1m ÉA É1

such that for every strategy s √ S 1(m1) there is a strategy t √ T such that for every
positive integer t , t) is a best reply of Player 2 to t) and therefore2 1 1v (s, v (s, r (s,t t T

t) ° a 2) . Player 2 chooses at random a strategy from T1 2 1 1
1 2max √A min √A r (a ,a a

and switches to another randomly chosen strategy from T if it does not fit. The conditional
probability of success at each round is at least 1/ and therefore the probability1 m1(m ÉA É )1

of success in one of the first rounds approaches 1 as C r ` , and the result1 m1Cm ÉA É1

follows. Formally, let b : A 1 r A 2 be a selection from the best reply correspondence of
Player 2. Construct the following mixed strategy of Player 2, t*, which is implemented
with an automation with state space

2M Å {1, . . . , m } 1 {1, . . . , l}1

where l Å The initial state of the automation of Player 2 is (1, 1) . Let a :m1[K /m ] .1

M 2 r A 1 be a random function, each such function equally likely, i.e., for every 1 ° i
° m1 , and every 1 ° j ° l , a( i , j) is a random element of A 1 each one equally likely,
and the various a( i , j) are independent. We define now the random action function of the
automation

2f ( i , j) Å b(a( i , j)) .

The transition function of the automation, depends on a random sequence k Å k1 , . . . , kl

each such sequence equally likely and the sequence is independent of the function a . We
are ready now to define the transition function which depends on the functions b and a
and the random sequence k .

( i / 1, j) if i õ m and c Å a( i , j) ,1

(k , j) if i Å m and c Å a( i , j) ,j 1
2g (( i , j) , c) Å

(1, j / 1) if j õ l and c x a( i , j) ,5
(1, 1) otherwise.

Let s be a pure strategy of Player 1 that is implemented by an automaton of size m1 . Let
a1 , a2 , . . . where at Å be the random play induced by the strategy pair s and t*,1 2(a , a )t t

and let . . . be the random sequence of states of the automation of Player i . Fix 1i iq , q ,1 2

° j ° l and let t Å tj be the random time of the first stage t with Å (1, j) . Note that2qt

11Prob(a Å a(s / 1, j) ∀ 0 ° s õ m ) Å ,t/s 1 1 m1
ÉA É

and if Å a(s / 1, j) ∀ 0 ° s õ m1 (and thus also Å b(a(s / 1, j)) ∀ 0 ° s1 2a at/s t/s

õ m1) then either there are 0 ° s õ s * õ m1 with Å and then1 1 1q q qt/s t/s= t/m1

Å and therefore √ . . . , or . . . , Å m1 and1 1 1 1 1 1q q {q , q } É{q , q }Ét/m /s0s= t/m t t/m 01 t t/m 011 1 1 1

then √ . . . , In either case there exists 0 ° s õ m1 such that the state1 1 1q {q , q }.t/m t t/m 011 1

of the automation of Player 1 at stage t / m1 , coincides with its state in stage t1qt/m1

/ s . Therefore if kj Å s / 1, the play will enter a cycle in which the payoff to Player 1
is at most r 1(a 1 , a 2) . Therefore the conditional probability, given the1 1 2 2max mina √A a √A

history of play up to stage tj that the payoff to Player 1 in any future stage is at most
r1(a 1 , a 2) , and that tj/1 Å ` is at least 1/ Otherwise, if1 m11 1 2 2max min (ÉA É m ) .a √A a √A 1

tj/1 õ ` , for every tj ° t õ t * õ tj/1 x and therefore tj/1 ° tj /1 2 1 2 2(q , q ) (q , q ) m .t t t= t= 1
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Therefore, if tl Å ` , for every stage t ú the payoff to Player 1 at stage t is at most2lm ,1

r1(a 1 , a 2) . The definition of l and the previous inequalities imply that1 1 2 2max mina √A a √A

1 m l011Prob( t Å `) ¢ 1 0 (1 0 1/(m ÉA É )) r 1 as m r ` ,l 1 1

which completes the proof of the theorem. h

A positive resolution of the next conjecture would provide a positive answer to con-
jecture 1.

CONJECTURE 2. For every « ú 0,

TVal(G (m , `)) r Val(G) as m r ` and m ¢ «T .1 1 1

The truth of the above conjecture implies that there is a function h : N r N with
limTr` h(T ) /T Å 0, and such that

Tlim Val(G (h(T ) , `)) Å Val(G) .(3)
Tr`

An interesting open problem is to find the order of magnitude of the smallest function h
obeying (3). Neyman and Okada (1996) show that if h : N r N is such that limTr` h(T ) /
(T / log T ) Å 0, then

T 1 1 2lim Val(G (h(T ) , `)) Å max min r (a , a ) .
1 1 2 2Tr` a √A a √A

CONJECTURE 3. If h : N r N is such that limTr`(T / log T ) /h(T ) Å 0, then

Tlim Val(G (h(T ) , `)) Å Val(G) .
Tr`

7. The proofs of the main theorems. Theorem 4 is straightforward, and is a result
of the following observation.

PROPOSITION 2. Let G Å (N ; (Ai )i√N ; (r i)i√N) , be an N-person game . Then any
pure strategy of Player i in GT is implemented by an automation of Player i of size

tÅT 0i t01( ÉA É .tÅ1

PROOF. Let M1 Å {M}, Mt Å (A0i) t01 . Let s be a pure strategy of Player i in GT ,
and let a Å »Mi , qi , f i , gi… be the automaton of Player i given by:

tÅT
i iM Å <M , q Å M,t

tÅ1

and for every h √ Mt , 1 ° t ° T ,

i i 0i 0if (h) Å s(h *) , g (h , a ) Å (h , a ) ,

where h * is the unique history of length t that is consistent with both h and s. Then, s is
implemented by the automaton a. h

PROOF OF THEOREM 1. Let G Å ({1, 2}, A , r) be a 2-person game, x √ co(r( A))
with x 1ú u 1(G) , and x 2ú u 2(G ) , and «ú 0 sufficiently small. Without loss of generality
we assume that m1 ° m2 . Assume that T0 and m0 are sufficiently large and that the triple
(T , m1 , m2) satisfies the following inequalities:
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T ¢ T ,0

and

3m ° m ° exp(« T ) .0 1

W.l.o.g. we assume that « õ 1. We will construct an equilibrium (s, t ) of GT(m1 , m2)
with associated equilibrium payoffs (y 1 , y 2) satisfying Éy i 0 x i

É õ «.
(A) The case m1 õ T /4.
For small values of m1 (relative to the value of T ) , we will construct a pure strategy

equilibrium, and for larger values of m1 the constructed equilibrium will be a mixed
strategy one.

For m1 õ T /4 we will define a play v Å (v1 , . . . , vT ) of GT which is a periodic
sequence of elements of A with period d , and such that the pair of strategies, s of Player
1 and t of Player 2, that follow the play v as long as the other player follows the play v
and triggers to punishing forever with a pure strategy as soon as a deviation was observed,
is an equilibrium of GT(m1 , m2) .

We start with the construction of the play v. Recall that K is twice the largest absolute
value of a payoff in the game G , and assume that e ú 0 is sufficiently small with «
õ min(1, K /4) , and let x √ co(r( A)) with x i ú ui(G) .

Without loss of generality we assume that x i ú ui (G) / 2«. Otherwise, let y
√ co(r( A)) with y i ú ui(G) and without loss of generality assume that y 1 0 u 1(G)
Å y 2 0 u 2(G) and « is sufficiently small so that « õ y i 0 ui(G) , set a Å 2e /3(y i

0 ui(G)) , xV Å ay / (1 0 a)x , and «* Å « /4. It follows that xV i ú ui(G ) / 2«* and
Éx i 0 xV i

É õ 2« /3 and therefore any point z with Éz i 0 xV i
Éõ «* satisfies Éz i 0 x i

É õ «.
Let d be a fixed positive integer with d ú 3(K /«) 2 .

There are three strategy pairs a1 , a2 and a3 in A and three nonnegative numbers a1 , a2

and a3 with aj Å 1 such that x Å ajr(aj) . Let a4 √ A be a point that maximizes3 3( (jÅ1 jÅ1

the payoff to Player 2, i.e., r 2(a4)¢ r 2(a) for every a √ A . Let d4 be the smallest positive
integer so that d4(r 2(a4) 0 u 2(G)) ú K . In particular (d4 0 1)2« õ K , i.e., d4 õ 1
/ K /2« and therefore d4K /d õ « /6 / K /d . Setting d1 Å [a1(d 0 d4 0 1)] , d2 Å [a2(d
0 d4 0 1)] and d3 Å d 0 d1 0 d2 0 d4 0 1, we deduce that 3 i i

É( d (r (a ) 0 x )ÉjÅ1 j j

° 2K and therefore

i i i id r (a ) / d r (a ) / d r (a ) / d r (a )1 1 2 2 3 3 4 4 i0 x õ « /2 0 K /d .Z Zd

Without loss of generality we assume that r 2(a1) ° r 2(a2) ° r 2(a3) ° r 2(a4) , and let 1
° k ° 3 be such that dk Å It follows that dk ú 2d /7. Let bk √ A be such that3max d .jÅ1 j

x Define the periodic play v Å (v1 , . . . , vT ) with period d as follows. The play1 1b a .k k

in the last d stages consists of 5 strings. Four of the strings consist of dj plays of the
strategy pair aj . The fifth string consist of one play of bk , and it follows the string dk ∗
ak . Symbolically we could write the play of the last d stages as

(v , . . . , v ) Å d ∗ a / ··· / d ∗ a / b / ··· / d ∗ aT0d/1 T 1 1 k k k 4 4

and therefore (v1 , . . . , vd) Å (vT0i/1 , . . . , vT , vT0d/1 , . . . , vT0i) where i Å T(mod d) .
Therefore,

4 i i( d r (a ) / r (b )jÅ1 j j k i0 x õ « /2,Z Zd

and therefore for sufficiently large values of T , e.g., T ¢ 2dK /«,
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T i( r (v )tÅ1 t i0 x õ «.(4) Z ZT

Note that the average payoff to Player 1 in each cycle is at least u 1(G) / « and that
for any a √ A and any 1 ° t ° T we have that r 1(a) 0 r 1(vt) ° K . Therefore, for every
t õ T 0 dK /«, and every a 1 √ A 1 ,

T
1 1 2 1 1r (a , v ) / (T 0 t)u (G) õ r (v ) .(5) ∑t s

sÅt

Furthermore, the periodic play v is such that for every a 2 √ A 2 and every T 0 d4 õ t
° T , we have that a 2) / ° As the sequence r 2(ai ) is2 1 T 2 T 2r (v , ( u (G) ( r (v ) .t sút sÅt s

nondecreasing, i.e., r 2(a1) ° r2(a2) ° r 2(a3) ° r 2(a4) we deduce that for every t ° T
0 d4 we have that a 2) / ° a 2) / / d4u 2(G)2 1 T 2 2 1 T0d 24r (v , ( u (G) r (v , ( u (G)t sút t sút

° Altogether we conclude that for every a 2 √ A 2 and every t ° T ,T 2( r (v ) .sÅt s

T T
2 1 2 2 2r (v , a ) / u (G) ° r (v ) .(6) ∑ ∑t s

sút sÅt

We will show now that the pair of strategies in GT(m1 , m2) , s of Player 1 and t of Player
2, that follow the play v as long as the other player follows the play v and trigger to
punishing forever with a pure strategy as soon as a deviation is observed, is an equilibrium
of GT(m1 , m2) . Note that such a strategy is in S i(mi ) whenever d õ mi . Moreover, it
follows from (5) that if s * √ S 1 is such that t) õ t) , then vt (s*, t) Å vt

1 1r (s, r (s*,T T

for every t õ T 0 dK /«. Thus, the strategy s* must deviate from the periodic play v,
after following the d-cycle for at least [(T 0 dK /« 0 1)/d] rounds. Therefore, the com-
plexity of s* is at least dk(T 0 2dK /«) /d ú 2(T 0 2dK /«) /7, which for a sufficiently
large value of T0 is larger than T /4, and thus such a strategy s * is not in S 1(m1) . Therefore,
for every s * √ S 1(m1) ,

1 1r (s, t) ¢ r (s*, t) .T T

It follows from (6) that for every t* in S 2 ,

2 2r (s, t) ¢ r (s, t*) .T T

Altogether we conclude that for sufficiently large values of m0 and T0 , (s, t) is an
equilibrium of GT(m1 , m2) with payoff vector y that satisfies Éy i 0 x i

É õ «.
(B) The case m1 ¢ T /4.
Assume that m1 ¢ T /4. Let x √ co(r( A)) . Then x is a convex combination of at most

three elements of r( A) . We consider the following three cases, according to the minimal
number of elements of r( A) that contain in their convex hull the point x . (1) There is a
√ A with x Å r(a) . (2) There are two different elements a1 , and a2 and positive numbers
l1 ú 0 and l2 ú 0, such that l1 / l2 Å 1 and li r(ai ) Å x . (3) There are three2( iÅ1

different elements a1 , a2 , a3 √ A and positive numbers l1 ú 0, l2 ú 0 and l3 ú 0, with
l1 / l2 / l3 Å 1 and li r(ai ) Å x . Case 3 is partitioned into three subcases according3( iÅ1

to the relative position of the entries a1 , a2 , and a3 in the matrix.
(3.1) 1 1 1a Å a Å a ,1 2 3

(3.2) 1 1 1a Å a x a ,1 2 3

(3.3) 1 1 1
É{a , a , a }É Å 3.1 2 3
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Proving the result for Case 3 is obviously sufficient to establish the theorem; any vector
payoff x √ co(r( A)) could be approximated as the convex combination li r(ai )3( iÅ1

Å x , with l1 ú 0, l2 ú 0, l3 ú 0, and l1 / l2 / l3 Å 1, and a1 , a2 , a3 are three different
elements in A . However, the result is easier in case 1, so to help the reader grasp the ideas
of the general proof, we first prove the results in case 1.

(B.1) subcase 1 with m2 ú T.
The following is a construction of an equilibrium for Case 1, i.e., x Å r(a) , and under

the assumptions m1 ¢ m0 and m2 ú T . We will construct an equilibrium point (s*, t*)
of GT(m1 , m2) with associated equilibrium vector payoff (y 1 , y 2) with Éy i 0 r i(a)É õ e.

We use the following notations here. The strategy b 2 of Player 2 in the (one shot) game
G is a best reply of Player 2 to the strategy a 1 of Player 1. The pure strategy ai is denoted
by 0. Let Di be the punishing strategy of Player i , i.e., Player i’s strategy that holds Player
3 0 i down to u 30 i(G) . Note that Di x ai , and denote the pure strategy Di by 1.

The mixed equilibrium strategy of Player 2, t*, chooses randomly a pure strategy te

where e is an element of a message space Q . The message space Q is a set of sequences
of zeros and ones of length k , where k depends on the parameters of the game, T and m1 .
The mixed strategy s* of Player 1 and the pure strategy te of Player 2 induce a play
v(s*, te) Å (v1(s*, te) , . . . , vT(s*, te)) that depends on e, and therefore we may
denote it as v(e) Å (v1(e) , . . . , vT(e)) and call it the proposed play. Player 2 commu-
nicates his choice of e Å (e1 , . . . , ek) in Q to Player 1 during the first k stages of the
repeated game by playing a 2 in all stages t with et Å 0 and playing D 2 in all stages t with
et Å 1. The next k stages of the proposed play are used to balance the number of stages
1 ° t ° 2k with Å 0 and the number of stages 1 ° t ° 2k with Å 1. The2 2v (e) v (e)t t

proposed play satisfies also for every 1 ° t ° 2k , Å 0. The sequence of actions of1v (e)t

Player 2 in stages 1 ° t ° 2k of the proposed play depends thus on e and is denoted by
u(e) Å (u1(e) , . . . , u2k(e)) . We refer to the first 2k stages of the repeated game as the
communication phase. Following the communication phase v1(e) , . . . , v2k(e) with vt(e)
Å (0, ut(e)) , and excluding the last stage of the game, the proposed play enters a cycle
of length l, where l depends on T , e.g., l will be the integer part of 2T /9, and l is much
larger than k . Both players cooperate during the first l 0 2k stages of the cycle, i.e.,
vt(e) Å (0, 0) whenever t õ T and t(mod l) ¢ 2k / 1 or 0 Å t(mod l). Following these
initial l 0 2k stages in the cycle, the players play the string ((u1(e) , u1(e)) . . . ,
(u2k(e)u2k(e))) , i.e., for 2k õ t with 1 ° t(mod l) ° 2k , vt (e) Å (ut (mod l) (e) ,
ut (mod l) (e)) .

The strategy of Player 1 will detect with positive probability any deviation of Player
2. Some deviations of Player 2 will be detected with positive probability immediately,
and others will lead to a detection with positive probability in a future stage. The strategy
of Player 1 triggers to punishing (playing D 1) forever once it detects a deviation by Player
2. We turn now to the formal definition of the proposed play and the construction of the
equilibrium strategies.

We start with the construction of the set Q , and the integers k and l. Let L be a suffi-
ciently large number, e.g., L Å 4 will do. Let l Å [T / (L / 1/2)] , and let k Å k(m1 , l) ,
i.e., k is the smallest integer such that 2 kl ú m1 0 l. It follows that

k01 k2 ° [(m 0 l) / l] õ 2(7) 1

and therefore there is a subset Q Å Q(m1 , l) of {0, 1} k such that ÉQÉ Å [(m1 0 l) / l] . It
follows that (m1 0 l) / l 0 1 õ ÉQÉ ° (m1 0 l) / l and thus

m 0 l õ ÉQÉl / l ° m .(8) 1 1

In addition we require the subset Q of {0, 1} k to satisfy the following two conditions:
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Q . {(e , . . . , e , 0) : e √ {0, 1}} (1, . . . , 1) /√Q .1 k01 i

These additional two requirements are feasible by (7) and they are used to simplify the
explicit description of the proposed play as a function of e √ Q as well as the description
of the equilibrium strategy of Player 1.

Given e Å (e1 , . . . , ek) in Q we denote by u(e) Å (u1(e) , . . . , u2k(e)) the element of
{0, 1}2k given by: ui (e) Å ei if 1 ° i ° k , ui (e) Å 0 if k õ i ° k / Sei and ui (e) Å 1
if k / Sei õ i ° 2k . Note that u(e) is a sequence of length 2k of zeros and ones having
exactly k zeros and k ones. The first k coordinates coincide with e1 , . . . , ek and the
remaining coordinates start with a string of zeros followed by a string of ones so that the
total number of ones equals k . Note that for every (e1 , . . . , ek) √ Q , õ k, andk( eiÅ1 i

therefore u2k(e) Å 1 for every e in Q . For every e in Q we associate a play v(e) of GT ,
i.e., a sequence v(e) Å (v1(e) , . . . , vT(e)) with vt(e) Å in A as follows:1 2(v (e) , v (e))t t

vT(e) Å (0, b 2) and for t õ T ,

(0, u (e)) if 1 ° t ° 2k ,t

(0, 0) if 0 õ ( t 0 2k)(mod l) ° l 0 2k ,
v (e) Åt

(u (e) , u (e)) if ( t 0 2k)(mod l) Å l 0 2k / i õ l,i i5
(u (e) , u (e)) if ( t 0 2k)(mod l) Å 0.2k 2k

Setting

Vu(e) Å ((0, u (e)) , . . . , (0, u (e))) ,1 2k

u*(e) Å ((u (e) , u (e)) , . . . , (u (e) , u (e))) ,1 1 2k 2k

and d Å T 0 2k 0 Ll,

2
Vv(e) Å u(e) / L ∗ (( l 0 2k) ∗ (0, 0) / u*(e)) / (d 0 1) ∗ (0, 0) / (0, b ) .

We derive in the following two lemmas two important properties of the proposed plays.

LEMMA 7. The vector payoff is independent of e, and for sufficientlyT( r(v (e))tÅ1 t

large values of T,

\R(v(e)) 0 r(0, 0)\ õ «.

PROOF. For every e √ Q , Å k . Therefore, Å kr(0, 1) / kr(0,2k 2k
V( u (e) ( r(u (e)iÅ1 i iÅ1 i

0) and Å kr(1, 1) / kr(0, 0) for every e √ Q . Therefore,2k *( r(u (e))iÅ1 i

T
2r(v (e)) Å kr(0, 1) / Lkr(1, 1) / r(0, b ) / (T 0 Lk 0 k 0 1)r(0, 0) .∑ t

tÅ1

As the right hand side of the above equality is independent of e, the first conclusion of
the lemma follows. As for T sufficiently large, (Lk / k / 1)/T is sufficiently small, the
second conclusion follows. h

Notice that for any e √ Q and any 2k õ t ° 2k / l, the play (vt(e) , . . . , vt/l01(e))
is a coordinated play. The next lemma asserts that all these coordinated plays are ÉQÉl
different ones.

LEMMA 8. For every
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(e, t) , (e*, t*) √ Q 1 {2k / 1, 2k / 2, . . . , 2k / l}

with (e, t) x (e*, t *) ,

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e*)) ,t t/l01 t= t=/l01

and thus there exists 0 ° s õ l, with

1 1v (e) x v (e*)t/s t=/s

and such that for every 0 ° s * õ s ,

2 2 2 2(v (e) , . . . , v (e)) Å (v (e*) , . . . , v (e*)) .t t/s= t= t=/s=

PROOF. Note that in each one of the proposed plays v(e) , e √ Q , both players play
in stages t Å 2k / 1, . . . , T 0 1 in concert, i.e., Å Therefore, it is enough1 2v (e) v (e) .t t

to prove that for any such pair (e, t) and (e*, t *) , there is 0 ° s õ l with

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e*)) .t t/s t= t=/s

or equivalently that there is 0 ° s õ l with

v (e) x v (e*) .t/s t=/s

Assume first that t Å t * and thus e x e*. As the map e r u*(e) is 1 0 1, u*(e) x u*(e*)
and therefore there is 0 ° s õ l with

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e*)) .t t/s t= t=/s

Next assume that t õ t *. If t * 0 t ú l 0 2k , setting s Å 2k / l 0 t *, t* / s Å l / 2k and
thus vt=/s(e*) Å (1, 1) while 2k õ t / s õ 4k and thus vt/s(e) Å (0, 0); and if t* 0 t °
l 0 2k , setting s Å 2k / l 0 t , t / s Å l / 2k and thus vt/s(e) Å (1, 1) while 2k / l õ
t* / s ° 2l and thus vt=/s(e) Å (0, 0) . h

We describe now the equilibrium strategy of Player 2. The strategy of Player 2 calls
for playing according to the proposed play as long as Player 1 follows the proposed play,
and it triggers to punishing (playing D 2) forever as soon as it observes a deviation by
Player 1 from the proposed play v(e) . Thus, for any e in Q , te Å is the puree T(t )t tÅ1

strategy of Player 2 defined by,

2v (e) if (s , . . . , s ) Å (v (e) , . . . , v (e)) ,t 1 t01 1 t01
et (s , . . . , s ) Åt 1 t01 H

1 otherwise.

Note that the strategy t* communicates its choice of e in Q to Player 1 during the first
2k stages of the repeated game by defecting (playing D 2) in all stages t for which ut(e)
Å 1.

Observe that te √ S 2(T , T / 1), i.e., te is implemented by an automaton of size T
/ 1; indeed, let »{1, . . . , T , T / 1}, 1, be the automation with action function2 2f , g …e e

defined by Å if t ° T , / 1) Å D 2 , and Å t / 1 if a2 2 2 2 2f f ( t) v (e) f (T g ( t , a)e e t e e

Å and t ° T , and a) Å T / 1 otherwise, i.e., if a x or if t Å T / 1.1 2 1v (e) g ( t , v (e) ,t e t

The equilibrium strategy t* in D(( 2(T , m2)) chooses an element e from Q , each
element equally likely, i.e., with probability 1/ÉQÉ, and given its choice e, plays te . In



537FINITELY REPEATED GAMES WITH FINITE AUTOMATA

/ 3906 0004 Mp 537 Monday Nov 02 03:26 PM INF–MOR 0004

other words, t* is the mixed strategy that selects the pure strategy te with probability 1/
ÉQÉ, or in other words, t* is the probability distribution on S 2(T , m2) which assigns
probability 1/ÉQÉ to each pure strategy te in S(T , m2) .

Let s be a strategy of Player 1, and e √ Q , with te) ¢ r 1(vt (e)) /T . Then1 Tr (s, (T tÅ1

vt(s, te) Å vt(e) for any t ° T 0 n where n is a fixed number that depends on a and G
alone. Therefore, for any strategy s of Player 1,

T
1 e 1r (s, t ) ° r (v (e)) /T / C /T ,(9) ∑T t

tÅ1

where C is a constant that depends on G alone.
Let s be a pure strategy for Player 1 with

T
1 1r (s, t*) ¢ r (v (e)) /T ,∑T t

tÅ1

and such that s is implemented by an automation of size m1 .
Set

T 1r (v (e))t1 eQ(1, s) Å e √ Q : r (s, t ) ú ,(10) ∑TH JTtÅ1

T 1 1 1r (v (e)) x 0 u (G)t1 eQ(2, s) Å e √ Q"Q(1, s) : r (s, t ) ¢ 0 ,(11) ∑TH JT 3tÅ1

and

T 1 1 1r (v (e)) x 0 u (G)t1 eQ(3, s) Å e √ Q : r (s, t ) õ 0 .(12) ∑TH JT 3tÅ1

LEMMA 9. For every pair (e, t) and (e*, t*) , with (e, t) x (e*, t *) and t ¢ t *, in the
union of the two sets

Q(1, s) 1 {2k / 1, 2k / 2, . . . , 3l / 2k}

and

Q(2, s) 1 {2k / 1, . . . , 2k / l}

there exists s õ T 0 t such that

2 2 2 2(v (e) , . . . , v (e)) Å (v (e*) , . . . , v (e*))t t/s t= t=/s

and

s(v (e) , . . . , v (e)) x s (v (e*) , . . . , v (e*)) .1 t/s 1 t=/s

PROOF. For every e √ Q(1, s) , r 1(s, te) ú R 1(v(e)) and therefore there is a de-
viation from the proposed play but no deviation prior to stage 2k / 4l, i.e., for every e
√ Q(1, s) and every t ° 2k / 4l, vt(s, te) Å vt (e) . For every e √ Q(2, s) , r 1(s, te)
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ú R 1(v(e)) 0 (x 1 0 u 1(G)) /3 and therefore no deviation from the proposed play prior
to stage 2k / 2l, i.e., for every e √ Q(2, s) and every t ° 2k / 2l, vt(s, te) Å vt(e) .

Therefore, if either t x t *(mod l) or t Å t*(mod l) and e x e* apply Lemma 7. If t
ú t*, t Å t *(mod l) and e √ Q(1, s) , let s be the largest positive integer such that

e e(v (e) , . . . , v (e)) Å (v (s, t ) , . . . , v (s, t )) .t t/s t= t=/s

As r 1(s, te) x R 1(v(e)) , s õ T 0 t and

s(v (e) , . . . , v (e)) x s(v (e*) , . . . , v (e*)) . h1 t/s 1 t=/s

Lemma 8 implies that

comp(s) ¢ 3lÉQ(1, s)É / lÉQ(2, s)É.(13)

LEMMA 10. For any strategy s √ S 1 (m1) ,

11 1r (s, t*) ° R (v(e)) .∑T
ÉQÉ Q

PROOF. If t*) ¢ it follows from (9) and the definition of1 T 1r (s, ( r (v (e)) /T ,T tÅ1 t

Q(3, s) that

1 1C r (a) 0 u (G)
ÉQ(1, s)É ¢ ÉQ(3, s)É,

T 3

i.e.,

1 1T(r (a) 0 u (G))
ÉQ(1, s)É ¢ ÉQ(3, s)É.

3C

Either Q(3, s) Å M and then ÉQ(1, s)É / ÉQ(2, s)É Å ÉQÉ, thus using (13) and
(8),

m ¢ ÉQ(1, s)É3l / ÉQ(2, s)Él1

Å ÉQÉl / ÉQ(1, s)É2l

ú m 0 2l / ÉQ(1, s)É2l1

which is possible only when Q(1, s) Å M and then t*) ° r 1(vt(e)) /T . Or,1 Tr (s, (T tÅ1

Q(3, s) x M, and T ú 6C / (r 1(a) 0 u 1(G )) . Then,

ÉQ(1, s)É ú 2ÉQ(3, s)É ¢ 2.

In that case,
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m ¢ ÉQ(1, s)É3l / ÉQ(2, l)Él1

l 5lÅ ÉQ(1, s)É / ÉQ(1, s)É / ÉQ(2, l)Él
2 2

3lú ÉQÉl / ÉQ(1, s)É
2

ú m 0 2l / ÉQ(1, s)Él1

ú m ,1

which is impossible. h

We construct now two pure strategies of Player 1, sp , p Å [ l /3] and p Å 2[ l /3] in
S 1(m1) that satisfy the following two properties:

p ev(s , t ) Å v(e)

and if s* is the mixture of the two strategies sp , each with probability 1/2, then for every
pure strategy t in S 2 of Player 2,

T
2 2r (s*, t) ° r (v (e)) /T .∑T t

tÅ1

It will follow that (s*, t*) is indeed an equilibrium of GT(m1 , m2) .
Each of the pure strategies, s p , is implemented by an automaton with state space Q

1 {1, . . . , l} < {M}. The state M of the automaton is interpreted as the punishing state.
Once the automaton moves into that state, it stays there and ‘‘punishes’’ forever, i.e.,
plays 1 repeatedly. The initial state of the automaton is (0, p) where 0 is the sequence of
zeros in Q . The action function of the automaton implementing sp is independent of the
value of p and is given by:

1f (M) Å 1

and for e in Q and 1 ° j ° l,

0 if 1 ° j ° l 0 2k ,
1f (e, j) Å H

u (e) if j Å l 0 2k / i .i

We may visualize the states of the automaton of the form (e, j) as if they are arranged in
a rectangular array with ÉQÉ rows and l columns. The rows are indexed by the different
elements e in Q and the columns are indexed 1, . . . , l. Thus the action function assigns
to each state in the first ( l 0 2k) columns the action a 1 , and in all other columns an action
that depends on the row.

Figure 2 is a partial illustration of the automaton of Player 1, in the case that k Å 3,
ÉQÉ Å 7 and p Å 2[ l /3] . The only states depicted in Figure 2 are the elements of Q
1 {p , . . . , p / 6, l 0 6, . . . , l 0 3}. The disks (circles with the center filled in) represent
states of the automaton that take the action 1. The other circles represent states of the
automaton that take the action 0 (a 1) . For every 1 ° t ° 3, the action of Player 1 in state
((e1 , e2 , e3) , l 0 6 / t) is et . Therefore, the sequence of the last three circles and disks
in each row identifies the element e √ Q . The initial state, ((0, 0, 0) , p) is marked with
an ∗ .
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FIGURE 2.

The horizontal arrows indicate the transitions of the automaton given a coordinated
play, as expected in the cycles. The double arrows indicate the transitions of the automaton
given action 1 by Player 2. The triple arrows indicate the transitions of the automaton
when the action of Player 2 is either 0 or 1. The circles with a dot at their center, indicate
the states (e, p / 5). If the automaton of Player 1 is state (e, p / 5) and Player 2 takes
the action 1, the next state of the automaton of Player 1 is (e, 1) .

The transition function of the automaton of Player 1 that implements s p , is described
by the function g 1 Å which depends on the integer p . There is one state of the auto-1gp

maton, the punishing state M, which is an absorbing state, i.e.,

1g (M, ∗) Å M.p

During the first k stages of the game, the automaton is moving between the different rows
in such a way that in stage k / 1 the state of the automaton is the row that corresponds
to the sequence of actions of Player 2 in the first k stages of the game. This is achieved
by the following partial definition of the transition function. If e Å (e1 , . . . , ek) Å (e1 ,
. . . , ej0p , 0, . . . , 0) and p ° j õ p / k , then,

1g ((e, j) , 1) Å ((e , . . . , e , 1, 0, . . . , 0) , j / 1).1 j0p

One property of the transition function of the automaton implementing sp , that will follow
from our definition of is:1g ,p

1g ((0, p) , (u (e) , ··· , u (e))) Å (e, 1) .p 1 2k

The next step in our construction of the transition function ensures that the strategy1g ,p

sp follows the proposed play v(e) as long as the other player follows the proposed play.

1g ((e, j) , 0) Å (e, j / 1) if j ° l 0 2k ,
1g ((e, j) , c) Å (e, j / 1) if j Å l 0 2k / i and u (e) Å c .i

In most other cases, the automaton will trigger to punishing forever, i.e., will move to
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the state M. However, there are few states which tolerate a play by Player 2 that differ
from 0. As follows from our construction, the states of the form (e, j) , with p ° j õ p
/ k , are used by the automaton of Player 1 to differentiate among the possible messages
e √ Q that Player 2 may transmit in the first k stages of the game, and therefore they do
tolerate the actions 0 and 1 of Player 2. The states of the automaton that are of the form
(e, j) , with p / k ° j õ p / k / do not tolerate any deviation, i.e.,k( eiÅ1 i

k
1g ((e, j) , 1) Å M if p / k ° j õ p / k / e .∑ i

iÅ1

Several states of the form (e, j) with j ¢ p / k / tolerate also the action 1 ofk( eiÅ1 i

Player 2. These states and transitions do depend on the value of p and are described below.
The uncertainty of Player 2 about the value of p disables him from exploitation of this
toleration in future stages of game without risking detection with probability at least 1/2.
If p Å [ l /3] , then

k k
1g ((e, j) , 1) Å (e, j / 2) if p / k / e ° j õ p / 3k 0 2 0 e and∑ ∑i i

iÅ1 iÅ1

k

j 0 p 0 k 0 e is even,∑ i

iÅ1

k
1g ((e, j) , 1) Å (e, 1) if j Å p / 3k 0 2 0 e .∑ i

iÅ1

If p Å 2[ l /3] , then

k
1g ((e, j) , 1) Å (e, j / 1) if p / k / e ° j õ p / 2k 0 1,∑ i

iÅ1

1g ((e, j) , 1) Å (e, 1) if j Å p / 2k 0 1.

In all other cases the value of equals M. In order to prove that (s*, t*) is an equilibrium1gp

of GT(m1 , m2) it suffices to show that te is indeed a best reply of Player 2 to s*.

LEMMA 11. For every strategy t √ S 2 and every e √ Q ,

T T
2 2 er (s*, t) ° r (s*, t ) .∑ ∑

tÅ1 tÅ1

PROOF. Assume first that t is a pure strategy of Player 2 such that for some e √ Q ,
vt(s*, t) Å vt(e) for every 1 ° t ° 2k , and r 2(s*, t) ¢ r 2(s*, t*) Å r 2(s*, te) .
Either vt (s*, t ) Å vt(e) for every t ° T , and then r 2(s*, t ) Å r 2(s*, t*), or there is
2k õ s ° T with vs(s*, t) x vs(e) and without loss of generality assume that for every
1 ° t õ s , vt(s*, t) Å vt(e) . Observe that T 0 2k 0 Ll is of the order of l /2 and
therefore for sufficiently large values of T , [ l /3] / 3k õ T 0 2k 0 Ll õ 2[ l /3] , and
thus in stages Tú tú 2k/ Ll/ [ l /3]/ 3k the strategy s* does not tolerate any deviation
from the proposed play. Also in these stages vt(e) Å (0, 0) and r 2(0, b 2) ¢ r 2(0, 0)
ú u 2(G) . Therefore, if T ú s ú 2k / Ll / [ l /3] / 3k , r 2(s*, t) õ r 2(s*, te) , and if
s Å T , r 2(s*, t) ° r 2(s*, te) . If 2k õ s ° 5k / Ll / [ l /3] , then at least one of the
two strategies s p , p Å [ l /3] or p Å 2 [ l /3] detects immediately the deviation of Player
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2 from the proposed play v(e) , and thus with probability at least 1/2 Player 1 detects
immediately the deviation of Player 2. Observe that there is a constant C such that any
play v of GT which is compatible with s p satisfies R 2(v) ° R 2(v(e)) / Ck /T , and on
the other hand, if in addition a deviation by Player 2 is detected prior to stage 2k / Ll
/ [ l /3] / 3k , r 2(v) õ 0 1/C . Thus for any strategy t of Player 2 which is2r (v(e))T

compatible with and deviates from the proposed play prior to stage 2k / Ll / [ l /3]uV (e)
/ 3k , r 2(s*, t) õ r 2(s*, t*). If t) , . . . , t )) is not in u(Q) , then with2 2(v (s*, v (s*,1 2k

probability at least 1/2 Player 1 detects the deviation of Player 2 prior to stage l, and
therefore his loss is approximately at least (T 0 l)(x 2 0 u 2(G)) /T , which is of the order
of a positive constant. His possible gain is at most of an order of k /T . Therefore t* is
indeed a best reply against s*. h

This completes the proof of case 1 under the assumption that m2 ú T .
(B.2) subcase 1 with m2 ° T .
The handling of Case 1 under the assumption that T /4 ° m2 ° T could be done in

various ways. For example, replace in the proposed play (0, b) with (0, 0) , and Player 1
sends a message at the first stages of the game, before Player 2 sends his message, and
the proposed play depends also on the message sent by Player 1, so that Player 2 is unable
to count to stage T and deviate then, or by relying on our handling of the other cases in
which Player 2 does not wish to deviate in the last few stages.

(B.3) subcase 3.
We turn now to the proof in Case 3. Recall that a proof of Case 3 provides also a proof

for the other cases. There are several features present in the proof of Case 3 that were not
present in the above proof in Case 1.

We start handling subcase (3.2) . Assume that Å x and assume further that1 1 1a a a1 2 3

Å Again, Player 2 communicates its choice of e √ Q , {0, 1} k during the com-2 2a a .1 3

munication phase which lasts for 2k stages. The resulting play in the communication phase
is denoted Following the communication phase the play enters a cycle of length l,Uu(e) .
part of which is a verification phase in which Player 1 communicates back the chosen e.

Assume that x √ co(r( A)) with x i ú ui(G) . As in the proof of the case m1 õ T /4
(where we replaced « by « /4 and x by a vector payoff y ú (u 1(G ) / 2« /3, u 2(G) / 2« /
3) which is 2« /3 apart from x) , we may assume without loss of generality that x i

ú ui(G) / 2«, and that « ú 0 is sufficiently small and the inequality m1 ° exp(« 3T ) is
replaced by m1 ° exp(64« 3T ) . Without loss of generality we denote and by 0 and1 2a a1 1

and by 1, and thus we assume that1 2 2a , a a3 2 3

x Å l r(0, 0) / l r(1, 1) / l r(0, 1) ,0 1 2

with l 0 ú 0, l1 ú 0, l2 ú 0, and Å 1. Let L Å [3K /«] . Either l 0r 2(0, 0)/ l2r 2(0,2( liÅ0 i

1) ú (u 2(G)/ 2«)(l 0 / l2) , or r 2(1, 1) ú u 2(G ) / 2«. Assume first that r 2(1, 1)
ú u 2(G) / 2«. Set

l Å [T / (L / 1 0 d)] ,

d Å [l l] ,1 1

4d Å L ,

d Å [ ll /d] ,2 2

d Å [ ll (1 0 1/L) /d] , and3 0

d Å l 0 d 0 dd 0 d(d / 1)/2 0 dd .0 1 2 3

The number l is the number of stages in each cycle following the communication phase.
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The action pairs in each cycle are (0, 0) , (0, 1) and (1, 1) . The number of plays of the
action pairs (0, 0) , (0, 1) and (1, 1) in each cycle will turn out to be approximately ll 0 ,
ll2 and ll1 , and thus the average payoff in the cycle is approximately x . The number of
complete cycles in the proposed play will turn out to be equal to L . The (L / 1)-th cycle
will almost reach its end. The variable d, which appears in the definition of the length l
of the cycle, is sufficiently small, so that

(L / 1) l 0 T ! l.

On the other end, it is not too small. It is sufficiently large so that (L / 1) l ¢ T . E.g., d
Å « 2. The last two inequalities will enable us to start playing the proposed cycle imme-
diately after the communication phase and define the cycles c(e) in such a way that: (1)
the last part of the cycle is independent of e, (2) the last string of action pairs in the
proposed play is of the form b∗(a 1 , a 2) / (a 1 , b 2) where b is a sufficiently large positive
integer, r 2(a 1 , a 2) ú u 2(G) / «, b 2 is a best reply of Player 2 to the action a 1 of
Player 1.

Let l1 Å d0 / d1 . Player 1’s complexity of the repeated play of each one of the proposed
cycles will turn out to equal l1 . Note that d0 is approximately ll 0 /L . Let k Å k(m1 , l1) ,
i.e., k is the smallest integer such that 2 kl1 ú m1 0 l1 . As m1 ° exp(64« 3T ) ,

3k õ 90« T .(14)

Let Q Å Q(m1 , l1) , as in case 1. Recall that

m 0 l õ ÉQÉl / l ° m .(15) 1 1 1 1 1

Recall that for every e √ Q we associate two plays; the communication play andUu(e) ,
the verification play u*(e) .

k k

Vu(e) Å (0, e ) / ··· / (0, e ) / e ∗ (0, 0) / k 0 e ∗ (0, 1) ,∑ ∑1 k i iS D
iÅ1 iÅ1

and

k k

u*(e) Å (e , e ) / ··· / (e , e ) / e ∗ (0, 0) / k 0 e ∗ (1, 1) .∑ ∑1 1 k k i iS D
iÅ1 iÅ1

Recall that for every e √ Q , õ k, and thus the communication play ends with (0,k( eiÅ1 i

1) and the verification play ends with (1, 1) . Define the play c* by,

d

c* Å (d ∗ (0, 0) / d ∗ (0, 1) / ( i 0 1) ∗ (0, 0) / (0, 1)) .∑ 3 2

iÅ1

Note that for every 1 ° i ° d ,

Éd ∗ (0, 0) / d ∗ (0, 1) / ( i 0 1) ∗ (0, 0) / (0, 1)É Å d / d / i3 2 3 2

and
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l r(0, 0) / l r(0, 1)0 2R(d ∗ (0, 0) / d ∗ (0, 1) / ( i 0 1) ∗ (0, 0) / (0, 1)) 03 2ZZ ZZl / l0 2

õ O(1/L) .

Define the play c Å c(e) of length l by,

c Å u*(e) / c* / (d 0 2k) ∗ (0, 0) / d ∗ (1, 1) .0 1

The following lemma asserts that the average payoff per stage in the play c is approx-
imately x .

LEMMA 12. The vector payoff R(c(e)) is independent of e, and for sufficiently large
values of T ,

i i
ÉR (c) 0 x É õ « /2.

PROOF. The number of times that each one of the action pairs, (0, 0) , (0, 1) and (1,
1) , appears in the play c , equals k / dd3 / d(d 0 1)/2 / d0 0 2k Å l 0 dd2 0 d 0 d1

0 k , dd2 / d , and d1 / k , respectively. The inequality (14) implies that for sufficiently
large values of T ,

3
Éll 0 (d / k)É õ 91« T ,1 1

and by the definition of d2 ,

Éll 0 (dd / d)É ° d ,2 2

and thus using the above two inequalities,

3
Éll 0 (k / dd / d(d 0 1)/2 / d 0 2k)É õ 91« T / d .0 3 0

Therefore, for sufficiently large values of T and « sufficiently small,

i i
ÉR (c) 0 x É õ « /2. h

Define the proposed play v(e) by, vT(e) Å (1, b) where b is a best reply of Player 2
to the action 1 of Player 1, and

Uv(e) Å u(e) / (L / 1) ∗ c .T

Recall that the last d1 Å [l1l] action pairs of the play c are (1, 1) , and that as l Å [T / (L
/ 1 0 d)] ,

dl / 2k 0 L 0 1 õ (L / 1) l / 2k 0 T ° dl / 2k ! d ,1

and thus the proposed play ends with a long string of (1, 1) followed by the action pair
(1, b 2) .

The following lemma asserts that the average payoff per stage in the proposed play
v(e) is independent of e and is approximately x .

LEMMA 13. The payoff per stage in the proposed play v(e) , R(v(e)) , is independent
of e , and for sufficiently large values of T ,
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i i
ÉR (v(e)) 0 x É õ «.

PROOF. Note that Ri(v1(e) , . . . , v2k(e)) is independent of e, and so is Ri(c(e)) .
Therefore, Ri(v1(e) , . . . , v2k/Ll(e)) is independent of e. Observe also that

(v , . . . , v ) / (2k / (L / 1) l / 1 0 T ) ∗ (1, 1) Å c(e)2k/Ll/1 T01

and vT(e) Å (1, b 2) . Therefore, as the vector payoff R(c(e)) is independent of e, so is
R(v2k/Ll/1 , . . . , vT ) . Thus we deduce on the one hand that R(v(e)) is independent of
e, and on the other hand, using the inequality 2k ° 2k / (L / 1) l 0 T ° l, ÉRi(v(e) 0
Ri(c)É õ K /L ° « /3. As ÉRi(c) 0 x i

É õ « /2, the result follows. h

As usual, for every e √ Q , te is the pure strategy of Player 2 that follows the proposed
play v(e) as long as Player 1 follows it, and it triggers to punishing forever as soon as a
deviation from the proposed play is observed. The mixed equilibrium strategy of Player
2, t* √ D(S 2 (T , m2)) , chooses an element e √ Q , each element with probability 1/ÉQÉ,
and given its choice e, plays the pure strategy te . The mixed equilibrium strategy of
Player 1, s* √ D(S 1(T , m1)) , is a mixture of pure strategies, each being implemented
by an automation with state space

1M Å {M} < Q 1 {1, . . . , l }.1

The action function of the automaton is given by,

1 1f (M) Å D ,

and

u (e) if 1 ° j ° 2k ,j

1f (e, j) Å 0 if 2k õ j ° d ,05
1 if d õ j ° d .0 1

The transitions of the automaton will be defined so that for each fixed e √ Q , if Player
2’s strategy is te , the state of the automaton at stage t Å l / 2k / j with 1 ° j ° 2k , or
at stage t Å l / 2k 0 l1 / j with 2k / 1 ° j ° l1 , is (e, j) . This leads to the following
defined transitions:

(e, j / 1) if 1 ° j õ 2k and u (e) Å 0,j
1g ((e, j) , 0) Å H

(e, j / 1) if 2k õ j ° d ,0

and

(e, j / 1) if 1 ° j õ 2k and u (e) Å 1,j

1g ((e, j) , 1) Å (e, j / 1) if d õ j õ l ,0 15
(e, 1) if j Å l .1

The states of the automaton of the form (e, j) with 1 ° j ° 2k or j ú d0 expect a
coordinated play. Any deviation from a coordinated play (either (0, 0) or (1, 1)) at these
states results in punishing forever. This is accomplished by defining the following tran-
sitions:
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M if 1 ° j ° 2k and u (e) Å 1,j
1g ((e, j) , 0) Å H

M if d õ j ° l ,0 1

1g ((e, j) , 1) Å M if 1 ° j õ 2k and u (e) Å 0,j

and

1g (M , ∗) Å M .

So far we have defined parts of the transition function of the automaton of Player 1
which are independent of the pure strategies in the support of s*. Other parts of the
transition function, and the initial state, are random and do depend on the following
independent random elements. A random integer p , d0 0 2LV k ° p õ d0 0 3k , where LV

is a sufficiently large positive integer, random integers q , 1 ° q ° 2, and z , 1 ° z ° L ,
a random increasing function j , j : {1, . . . , L} r {2k / d3 / 1, . . . , d0 0 3Lk} with j( i
/ 1) ú j( i) / 2d2 / d3 / d , and a random sequence i1 , . . . , id of elements of {1, . . . ,
L}. The initial state of the automaton is (0, p) where 0 is the sequence of zeros in Q . We
define now those transitions that enable Player 1 to record the chosen e √ Q . If e Å (e1 ,
. . . , ek) Å (e1 , . . . , ej0p , 0, . . . , 0) and p ° j õ p / k , and (e1 , . . . , ej0p , 1, 0, . . . , 0)
√ Q , then,

1g ((e, j) , 1) Å ((e , . . . , e , 1, 0, . . . , 0) , j / 1).1 j0p

The states of the automaton that are of the form (e, j) , with p / k ° j õ p / k
/ do not tolerate any deviation, i.e.,k( eiÅ1 i

k
1g ((e, j) , 1) Å M if p / k ° j õ p / k / e .∑ i

iÅ1

Several states of the form (e, j) with p / k / ° j ° p / 3k tolerate also thek( eiÅ1 i

action 1 of Player 2. These states do depend on the values of p and q . The uncertainty of
Player 2 about the values of p and q disables him from exploiting this toleration in future
stages of the game without risking detection with high probability. If q Å 1,

k

(e, j / 1) if p / k / e ° j õ p / 2k ,∑ i
1 iÅ1g ((e, j) , 1) Å 5 (e, 1) if j Å p / 2k 0 1,

and if q Å 2,

k k

(e, j / 2) if p / k / e ° j õ p / 3k 0 e ,∑ ∑i i

iÅ1 iÅ1

k
1g ((e, j) , 1) Å and j 0 p 0 k 0 e is even,∑ i

iÅ1

k5
(e, 1) if j Å p / 3k 0 e 0 2,∑ i

iÅ1

and
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1g ((e, 2k) , 1) Å (e, j( i ) 0 d ) .1 3

For every 1 ° t ° d , we define the following transitions.

1g ((e, j( i ) / zs) , 1) Å (e, j( i ) / zs / z) if 0 ° s õ d ,t t 2

and

(e, j( i ) 0 d ) if s Å j( i ) / zd / t and t õ d ,t/1 3 t 2
1g ((e, j( i ) / s) , 1) Åt H

(e, 2k / 1) if s Å j( i ) / zd / t and t Å d .t 2

Note that our assumptions on the random sequence i1 , . . . , id and the random function
j , imply that for 1 ° t õ tV , j( it) / t x j( itV ) / tV , and thus the above transitions are well
defined. In all other cases the automaton moves to the punishing state M .

LEMMA 14. For every strategy s √ S 1 ,

comp(s) ¢ 3l ÉQ(1, s)É / l ÉQ(2, s)É,1 1

where Q(1, s) and Q(2, s) are defined as in (10) and (11), respectively .
Let Éc*É denote the length of the play c*, i.e., Éc*É Å / d2 / i) . Consider thed( (diÅ1 3

two sets

X Å Q(1, s) 1 ({4k / Éc*É, . . . , 4k / l 0 1} / {0, l, 2l})

and

Y Å Q(2, s) 1 {4k / Éc*É, . . . , 4k / l 0 1}.

By the definition of the complexity of a strategy, it suffices to show that for every pair
(e, t) x (e*, t *) with t ¢ t * in the union of the two sets, X < Y , (v1(e) , . . . , vt(e)) is
compatible with s, and

(sÉv (e) , . . . , v (e)) x (sÉv (e*) , . . . , v (e*)) .(16) 1 t 1 t=

For every e √ Q (1, s) , r 1(s, te) ú R 1(v(e)) and therefore there is a deviation from
the proposed play but no deviation prior to stage 4k / 4l, i.e., for every e √ Q(1, s) and
every t ° 4k / 4l, vt(s, te) Å vt(e) . In particular, (v1(e) , . . . , v4k/4l(e)) is compatible
with s. For every e √ Q(2, s) , r 1(s, te) ú R 1(v(e)) 0 (x 1 0 u 1(G)) /3 and therefore
no deviation from the proposed play prior to stage 4k / 2l, i.e., for every e √ Q (2, s)
and every t ° 4k / 2l, vt (s, te) Å vt(e) . In particular (v1(e) , . . . , v4k/2l(e)) is com-
patible with s.

The play . . . , is a coordinated play with the first d0 0 2k˙(v (e) , v (e))4k/1/Éc É 4k/l/d3

and the last d3 action pairs being (0, 0) and v4k/l (e) Å (1, 1) . As d3 ú 2k , the string (1,
1) / d3 ∗ (0, 0) appears only at the end of the play, and therefore, if 4k / Éc*É ° t *
õ t õ 4k / l,

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e)) .t/1 4k/l t=/1 4k/l/t=0t

As each one of these two plays is a coordinated play, (16) follows. The same argument
applies for all pairs (e, t) x (e*, t *) with t x t *(mod l) .
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We consider next the case tÅ t *(mod l) and ex e*. Note that the play c* is independent
of e and therefore so is the play

(v (e) , . . . , v (e)) Å c*.4k/l/1 4k/l/Éc˙É

On the other hand,

(v (e) , . . . , v (e)) is a coordinated play.4k/l/Éc˙É/1 4k/2l

Therefore, if t Å t *(mod l) and e x e*,

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e*)) .t/1 t/l t= t=/l

Let s be the smallest nonnegative integer with

(v (e) , . . . , v (e)) x (v (e*) , . . . , v (e*)) .t/1 t/s t=/1 t=/s

It follows that x and thus (16) holds.1 1v (e) v (e*)t/s t=/s

Assume next that tú t *, t 0 t * Å 0(mod l) and e Å e* √ Q (1, s) . Let s be the smallest
positive integer such that

1 1 ev (e) x v (s, t ) .t/s t=/s

As r 1(s, te) x R 1(v(e)) , s ° T 0 t and

(v (e) , . . . , v (e)) Å (v (e*) , . . . , v (e*)) ,t/1 t/s01 t=/1 t=/s01

and thus (16) follows. h

LEMMA 15 For every s √ ( 1(m1) ,

T 1r (v (e))t1r (s, t*) ° .∑T TtÅ1

PROOF. Let s be a pure strategy for Player 1 with

T 1r (v (e))t1r (s, t*) ¢ ,∑T TtÅ1

and such that s is implemented by an automaton of size m1 . Recall that s satisfies the
inequality (9) . Define Q(1, s) , Q(2, s) , and Q(3, s) as in (10), (11), and (12),
respectively. By Lemma 14,

m ¢ comp(s) ¢ 3l ÉQ(1, s)É / l ÉQ(2, s)É.(17) 1 1 1

Either Q(3, s) Å M, and then ÉQ(1, s)É / ÉQ(2, s)É Å ÉQÉ. However, comp(s)
° m1 which is compatible with (15) and (17) only if Q(1, s) Å M and then t*)1r (s,T

° t*). Or, Q (3, s) x M. Then, it follows from (17) and (15), that ÉQ(3, s)Él1
1r (s*,T

/ l1 ¢ 2l1ÉQ(1, s)É, and therefore for sufficiently large T , t*)° t*). h
1 1r (s, r (s*,T T

Next we will prove that t* is a best reply of Player 2 to s*.

LEMMA 16. For any t √ ( 2 ,
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2 2 2r (s*, t) ° r (s*, t*) Å R (v(e)) .

PROOF. Let t be a pure strategy of Player 2. Note that the induced play v(s*, t) is
a random sequence. We will prove that

2 2 2E(R (v(s*, t))) Å r (s*, t) ° r (s*, t*).

Assume first that there is e √ Q with

v (s*, t) Å v (e) ∀t ° 2k .t t

Note that for any t ° T and any a √ A 2 ,

T
2 1 2 2r (v (e) , a) / (T 0 t)u (G) ° r (v (e)) .∑t s

sÅt

Let t be the smallest integer with vt(s*, t) x vt(e) . Then, if vt(e) Å (1, 1) Player 1
will trigger to punishing forever, and then t) ° t*). If vt(e) Å (0, 0)2 2r (s*, r (s*,T T

then t° T0 l1l /3 and with probability close to one, Player 1 triggers to punishing forever
resulting in future losses to Player 2 of 2e(l1 0 e 2) l. The one time deviation can generate
a gain of the order of a constant, and no sufficient certainty to generate additional gains
in the future. Therefore t) ° t*). If vt(e) Å (0, 1) then t ° T 0 d1 and2 2r (s*, r (s*,T T

with probability close to one, Player 1 triggers to punishing forever in the next d0 0 2k
0 1 stages. As L is sufficiently large, and d0 and d1 are approximately ll 0 /L and ll1 ,
respectively, it follows that t) ° t*). Finally, observe that if t) ,2 2 2r (s*, r (s*, (v (s*,T T 1

. . . , t) u(Q) , then with probability at least 1/2 Player 1 will trigger to2v (s*, /√2k

punishing forever in one of the next 2Lk stages, and the possible gains from such a
deviation are offset by the loss in case Player 1 realizes a deviation. Altogether, we
conclude that (s*, t*) is an equilibrium of GT(m1 , m2) . If r 2(1, 1) ° u 2(G ) / 2e then
one modifies the proposed play so that the game ends with the last string (d0 0 2k) ∗ (0,
0) ( if r 2(0, 0)¢ r2(0, 1)) , or the last string d2 ∗ (0, 1) . For example, by adding the play
d4 ∗ (1, 1) following the communication phase where d4 õ d1 and if needed changing d.
The proof in the subcases 3.2 when Å 3, follows the same lines as our2 2 2

É{a , a , a }É1 2 3

present proof: Without loss of generality a1 Å (0, 0) , a2 Å (0, 1) and a3 Å (1, 2) . The
action pairs (0, 1) in the communication play are replaced by (0, 2) and the action pairs
(1, 1) in the proposed play are replaced by (1, 2) . In subcase 3.1, one adds an action pair
a4 with x and approximate the vector payoff x by a convex combination of r(ai ) ,1 1a a4 1

1 ° i ° 4, and the rest of the proof is very similar to our handling of subcase 3.2. In case
3.3, assume first that Å Å W.l.o.g. r 2(a1) ¢ r 2(a2) ¢ r2(a3) , a1 Å (0, 1) , a2

2 2 2a a a .1 2 3

Å (1, 1) , a3 Å (2, 1) , a4 Å (0, 0) and 0 is a best reply of Player 2 to the action 0 of
Player 1. One approximates x as a convex combination of r(ai ) , 1 ° i ° 4, and designs
a similar proposed play as in our case 3.2, making sure that the synchronization is such
that the game ends with a long string of (0, 0) . This completes the proof of Theorem 1
under the condition m2 ú T . If m2 ° T one either makes the modification indicated at the
close of the proof of case 1), or refers to the next comment.

Any payoff x √ cor( A ) is an average (a√A lar(a) where for every a √ A la ú 0 and
(a√A laÅ 1. It should be clear from our proof of subcase 3.2 that one can actually generate
an equilibrium of GT(m1 , m2) that consists of a communication phase and the play in the
cycle runs over all action pairs a √ A with frequencies which are approximately la .
Moreover, one can synchronize the play so that the game terminates with a long string of
best replies of Player 2 yielding him a payoff above his individual rational one. This
completes the proof of Theorem 1. h
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PROOF OF THEOREMS 2 AND 3. Theorems 2 and 3 (assuming that there is x √
co(r( A)) with x i ú £

i(G)) follow directly from our proof of Theorem 1 together with
Theorem 5, by replacing the single punishing state in the automaton of each player with
a set of punishing states of size l1 .

Assume next that there is no x√ co(r( A)) with x iú £
i (G) . Either xÅ (£ 1(G) , £ 2(G))

for every x √ co(r( A)) with (x 1 , x 2) ¢ (£ 1(G ) , £ 1(G)) , and then the theorem follows
directly from Theorem 5, or we may assume without loss of generality that x 2 ° £

2(G )
for every x √ r(A) . Therefore it must be the case that there is a strategy, say 1, of Player
2, such that for every strategy c of Player 1, r 2(c , 1) Å £

2(G) . Assume that b √ A 1

maximizes r 1(c , 1) , and a √ A 1 minimizes r 1(c , 1) with a x b. Note that it follows that
£

1(G) ° r 1(b , 1) . The play T ∗ (b , 1) is an equilibrium play of GT(m1 , m2) . If x
Å lar1(a , 1) / lbr 1(b , 1) with x 1 ú £

1(G) , la , lb ú 0 and la / lb Å 1. Then a play of
the form d0 ∗ (b , 1) / (L ∗ (da ∗ (a , 1) / db ∗ (b , 1)) is an equilibrium play of GT(m1 ,
m2) for db sufficiently large, x 1 õ R 1(da ∗ (a , 1) / db ∗ (a , 1))õ x 1 / e /2, L sufficiently
large and d0 / L(da / db) Å T . This illustrates the result for payoff vectors in the interval
[r(a , 1) , r(b , 1)] . Assume next that there is an action pair (0, 0) with r 1(0, 0) ú r 1(b ,
1) and r 2(0, 0) Å r2(b , 1) . Then the action pair (0, 0) differs from either (b , 1) or (a,
1) in each coordinate. Any individual rational payoff is either in the interval [r(a , 1) ,
r(b , 1)] or a convex combination of the payoffs to two strategy pairs (0, 0) and (b , 1) .
Label the action b by 1 if b x 0, or label the action a by 1 if b Å 0, and construct an
equilibrium of GT(m1 , m2) in which the communication and verification phases are the
same as in our proof of Theorem 1 and the cycle consists of one string of the strategy
pair (0, 0) and another string of the strategy pair (1, 1) . h

PROOF OF THE MAIN THEOREM. Let G Å ({1, 2}, A , r) be a two person game in
strategic form, and let (T , m1(T ) , be a sequence of triples of positive integers`m (T ))2 TÅ1

with miniÅ1,2 mi (T ) r ` as T r ` , and

log max m (T )iÅ1,2 ilim Å 0.
min(m (T ) , m (T ) , T )Tr` 1 2

By Theorem 3 it follows that

Tlim inf E(G (m (T ) , m (T ))) . E(G*).1 2 `
Tr`

On the other hand, any x √ E(GT(m1(T ) , m2(T ))) is obviously in co(r( A)) , and by
Theorem 5, for every e ú 0, x i ú £

i (G) 0 e for sufficiently large values of T . Therefore,

Tlim sup E(G (m (T ) , m (T ))) , E(G*)1 2 `
Tr`

which together with the previous inclusion proves the Main Theorem. h

8. Remarks. It is of interest to complete the study of the asymptotics of the equilib-
rium payoff sets E(GT(m1 , . . . , mn)) of finitely repeated n-person games. Several ex-
tensions need only minor modifications. For example, the generalization of Theorem 1
for the case that m1 Å ··· Å mn01 ° mn and x Å with li ¢ 0, Å 1k k( l r(a ) ( liÅ1 i i iÅ1 i

and 1 ° i ° k}É Å k for every 1 ° j ° n . Other extensions are more intricate.j
É{a Éi

The conclusion of Theorem 1 continues to hold for n-person finitely repeated games under
the assumptions that m1 ° m2 ° ··· ° mn01 ° mn and mn01 ° exp(e 3T ) , and that there
are points y, z √ co(r(A)) with yi õ zi, i Å h 0 1, n. There are, however, difficulties in
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FIGURE 3.

extending our main theorem to n-person games. The naive generalization is not correct,
however. Consider the 3-player game G of Figure 3.

Player 1 chooses the row, Player 2 the column, and Player 3 chooses the matrix. Note
that £ 1(G) Å 0 Å £

2(G ) and £
3(G) Å 6. Thus is the set co{(0, 0, 8) , (0, 0, 6) ,E(G*)`

(2, 2, 6)}. In particular, (3, 3, 5) Denote by wi(G) the max min of Player i/√ E(G*).`

where he maximizes over his mixed strategies and the min is over the pure strategies of the
other players. In the game above, w3(G)Å and1 1 223 1 2 11Amax min r (a , a , x) Å 4x√D(A ) (a ,a )√A

thus by using either Proposition 2 or Proposition 3 of Neyman (1997) one may construct
sequences m1(T ), m2(T ) and m3(T ), with m1(T )°m3(T ) and limTr` min{m1(T ), m2(T )}
Å ` such that (3, 3, 5) √ lim supE(GT(m1(T ), m2(T ), m3 (T )). For example, if (m1(T )
log m1(T ))/ min(T, m2(T )) r 0 as T r ` , repeated play of the right matrix is the outcome
of a pure strategy equilibrium of GT(m1(T ), m2(T ), m3(T )) and if m2(T )°m1(T )Å o(T )
with log m1(T )/ min(m2(T ), log m3(T )) r 0 as T r ` , repeated play of the right matrix is
the outcome of a mixed strategy equilibrium of GT(m1(T ), m2(T ), m3(T )). We hope to
provide details of our findings for n-person finitely repeated games with finite automata in
the future.
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