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Abstract 

The dominant computational approach to model operant learning and its underlying neural 

activity is model-free reinforcement learning (RL). However, there is accumulating behavioral and 

neuronal-related evidence that human (and animal) operant learning is far more multifaceted. Theoretical 

advances in RL, such as hierarchical and model-based RL extend the explanatory power of RL to account 

for some of these findings. Nevertheless, some other aspects of human behavior remain inexplicable even 

in the simplest tasks. Here we review developments and remaining challenges in relating RL models to 

human operant learning. In particular, we emphasize that learning a model of the world is an essential 

step prior or in parallel to learning the policy in RL and discuss alternative models that directly learn a 

policy without an explicit world model in terms of state-action pairs.  
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Model-free RL 

The computational problem in many operant learning tasks can be formulated in a framework 

known as Markov Decision Processes (MDP) [1]. In MDPs, the world can be in one of several states, 

which determine the consequences of the agent's actions with respect to the future rewards and world 

states. A policy defines the agent behavior at a given situation. In MDP, a policy is a mapping from the 

states of the environment to actions to be taken when in those states [1]. Finding the optimal policy is 

difficult because actions may have both immediate and long-term consequences. However, this problem 

can be simplified by estimating values, the expected cumulative (discounted) rewards associated with 

these states and actions and using these values to choose the actions (for detailed characterization of the 

mapping from values to actions in humans, see [2]).  

Model-free RL, as its name suggests, is a family of RL algorithms devised to learn the values of 

the states without learning the full specification of the MDP. In a class of model-free algorithms, known 

as temporal-difference learning, the learning of the values is based on the reward-prediction error (RPE), 

the discrepancy between the expected reward before and after an action is taken (taking into account also 

the ensuing obtained reward). The hypothesis that the brain utilizes model-free RL for operant learning 

holds considerable sway in the fields of neuroeconomics. This hypothesis is supported by experiments 

demonstrating that in primates, the phasic activity of mid-brain dopaminergic neurons is correlated with 

the RPE [3,4]. In mice, this correlation was also shown to be causal: optogenetic activation of 

dopaminergic neurons is sufficient to drive operant learning, supporting the hypothesis that the 

dopaminergic neurons encode the RPE , which is used for operant learning [5]. Other putative brain 

regions for this computation are the striatum, whose activity is correlated with values of the states and / or 

actions [6,7] and the nucleus accumbens and pallidum, which are involved in the selection of the actions 

[8]. In addition to its neural correlates, model-free RL has been used to account for the trial-by-trial 

dynamics (e.g., [2]) and for several robust aggregate features of human behavior such as risk aversion [9], 
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recency [10] and primacy [2]. Moreover, model-free RL has been proven useful in the field of 

computational psychiatry as a way of diagnosing and characterizing different pathologies [11–14].  

However, there is also evidence that the correspondence between dopaminergic neurons and the 

RPE is more complex and diverse than was previously thought [15]. First, dopaminergic neurons increase 

their firing rate in response to both surprisingly positive and negative reinforcements [16,17]. Second, 

dopaminergic activity is correlated with other variables of the task, such as uncertainty [18]. Third, the 

RPE is not exclusively represented by dopamine, as additional neuromodulators, in particular serotonin, 

are also correlated with the RPE [19]. Finally, some findings suggest that reinforcement and punishment 

signals are not local but rather ubiquitous in the human brain [20]. These results challenge the dominance 

of the anatomically-modular model-free RL as a model for operant learning.  

Model-based RL  

When training is intense, task-independent reward devaluation, e.g. through satiety, has only a 

little immediate effect on behavior. This habitual learning is consistent with model-free RL because in 

this framework, the value of an action is updated only when it is executed. By contrast, when training is 

moderate, the response to reward devaluation is immediate and substantial [21]. This and other behaviors 

(e.g., planning) is consistent with an alternative RL approach, known as model-based RL, in which a 

model of the world, i.e., the parameters that specify the MDP is learned prior to choosing a policy. The 

effect of reward devaluation after moderate training can be explained by model-based RL because a 

change in a world parameter (e.g., the value of the reward as a result of satiety) can be used to update 

(off-line) the values of other states and actions.  

If the parameters of the MDP are known, one can compute the values of all states and actions, for 

example by means of dynamic programming or Monte-Carlo simulation. Alternatively, one could choose 

an action by expanding a look-ahead decision tree on-line [1]. However, a full expansion of a look-ahead 

tree is computationally difficult because the number of branches increases exponentially with the height 
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of the tree, so that pruning of the tree is a necessary approximation. Indeed, a recent study has suggested 

that humans prune the decision-tree, by trimming branches associate with large losses [14].  

 Whether or not model-based and model-free learning are implemented by two anatomically 

distinct systems is a subject of debate. In support of anatomical modularity are findings that the medial 

striatum is more engaged during planning whereas the lateral striatum is more engaged during choices in 

extensively trained tasks [22]. In addition, the state prediction error, which signals the discrepancy 

between the current model and the observed state transitions is correlated with activity in the intraparietal 

sulcus and lateral prefrontal cortex, spatially separated from the main correlate of the RPE in the ventral 

striatum [23]. Findings that tend to negate anatomical modularity include reports of signatures of both 

model-based and model-free learning in the ventral striatum [24]. 

The curse of dimensionality and the blessing of hierarchical RL 

There are also theoretical reasons why the RL models described above cannot fully account for 

operant learning in natural environments. First, the computational problem of finding the values is 

bedeviled by the “curse of dimensionality”: the number of states is exponential with the number of 

variable, which define a state [1]. Second, when the state of the world is only partially known, (i.e., the 

environment is a partially observable MDP (POMDP), applying model-free algorithms such as Q-learning 

may converge to a solution that is far from optimality or may fail to converge altogether [25]. One 

approach to addressing these problems is to break down the learning task into a hierarchy of simpler 

learning problems, a framework known as Hierarchical Reinforcement Learning (HRL) [26]. 

Neuroimaging studies have indeed found neural responses that are consistent with sub-goal-related RPE, 

as is predicted by HRL [27].  

Challenges in relating human behavior to RL algorithms 

Despite the many successes of the different RL algorithms in explaining some of the observed 

human operant learning behaviors, others are still difficult to account for. For example, humans tend to 
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alternate rather than repeat an action after receiving a positively surprising payoff. This behavior is 

observed both in simple repeated two-alternative force choice tasks with probabilistic rewards (also 

known as the 2-armed bandit task, Fig. 1A) and in the stock market [28]. Moreover, a recent study found 

that the behavior of half of the participants in a 4-alternaive version of the bandit task, known as the Iowa 

gambling task, is better explained by the simple ad-hoc heuristic “win-stay, lose-shift” (WSLS) than by 

RL models [29]. Another challenge to the current RL models is the tremendous heterogeneity in reports 

on human operant learning, even in simple bandit tasks, measured in different laboratories in slightly 

different conditions. For example, as was described above, the WSLS observed in 4-arm bandit [29] is 

inconsistent with the alternation after positively surprising payoffs discussed above [28]. Additionally, 

probability matching, the tendency to choose an action in proportion to the probability of reward 

associated with that action, has been a subject of debate over half-a-century. On one hand, there are 

numerous reports supporting this law of behavior both in the laboratory and when humans gamble 

substantial amounts of money on the outcome of real-life situations [30]. On the other hand, there is 

abundant literature arguing that people deviate from probability matching in favor of choosing the more 

rewarding action (maximization) [31]. Finally, there is substantial heterogeneity not only between 

subjects and laboratories but also within subjects over time. A recent study has demonstrated substantial 

day-to-day fluctuations in learning behavior of monkeys in the two-armed bandit task and has shown that 

these fluctuations are correlated with day-to-day fluctuations in the neural activity in the putamen [32].  

Heterogeneity in world model  

The lack of uniformity regarding behavior even in simple tasks could be due to heterogeneity in 

the prior expectations of the participants. From the experimentalist point of view, the two-armed bandit 

task, for example, is simple: the world is characterized by a single state and two actions (Figure 1A). 

However, from the participant point of view there is, theoretically, an infinite repertoire of possible world 

models characterized by different definitions of sets of states and actions. This could be true even when 

precise instructions are given due, for example, lack of trust, inattention or forgetfulness. With respect to 
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the actions set, the participant may assume that there is only a single available action, the pressing of any 

button, regardless of its properties (Figure 1B). Alternatively, differences in the timing of the button 

press, the finger used, etcetera, could all define different actions. Such precise definition of action, which 

is irrelevant to the task, may end with non-optimal behavior. With respect to the states set, the participant 

may assume that there are several states that depend on the history of actions and / or rewards. For 

example, the participant may assume that the state is defined by the last action (Fig. 1C), the last action 

and the last reward, or a function of the long history of actions [33]. Finally, the participant may assume a 

strategic game setting such as a matching-pennies game (Figure 1D). These and other possible 

assumptions (Figure 1E) may lead to very different predictions on behavior [34]. In support of this 

possibility, experimental manipulations such as instructions, which are irrelevant to the reward schedule, 

but may change the prior belief about the number of states can have a considerable effect on human 

behavior [35]. Finally, humans and animals have been shown to develop idiosyncratic and stereotyped 

superstitious behaviors even in simple laboratory settings [36]. If participants fail to recognize the true 

structure of a learning problem in simple laboratory settings, they may also fail to identify the relevant 

states and actions when learning from rewards in natural environments. For example, professional 

basketball players have been shown to overgeneralize when learning from their experience [37]. 

Learning the world model 

Many models of operant learning often take as given that the learner has already recognized the 

available sets of states and actions (Fig. 2A). Hence, when attempting to account for human behavior they 

fail to consider the necessary preliminary step of identifying them (correctly or incorrectly). In machine 

learning, classification is often preceded by an unsupervised dimension-reduction for feature extraction 

[38,39]. Similarly, it has been suggested that operant learning is a two-step process (Figure 2B): in the 

first step, the state and action sets are learned from the history (possibly using priors on the world), where 

in the second step RL algorithms are utilized to find the optimal policy given these sets [40]. An 

interesting alternative is that the relevant state-action sets and the policy are learned in parallel (Figure 
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2C). For example, a new approach in RL, known as feature RL, the state set and the values of the states 

are learned simultaneously from the history of observations, actions and rewards. One crucial property of 

feature RL is that it neither requires nor learns a model of the complete observation space, but rather 

learns a model that is based on the reward-relevant observations [41].  

Learning without States 

Operant learning can also be accomplished without an explicit representation of states and 

actions, by directly tuning a parametric policy (Fig. 2D). A plausible implementation of such direct policy 

learning algorithms is using stochastic policy-gradient methods [42–44]. The idea behind these methods 

is that the gradient of the average reward (with respect to policy parameter) can be estimated on-line by 

perturbing a neural network model with noise and considering the effect of these perturbations on the 

stream of payoffs delivered to the learning agent. Changes in the policy in the direction of this estimated 

gradient are bound, under certain assumptions, to improve performance. However, local minima may 

prevent the learning dynamics from converging to the optimal solution. 

Direct policy methods have been proposed to explain birdsong learning [45] and have received 

some experimental support [46,47]. In humans, a model for gradient learning in spiking neurons [48,49] 

has been shown to be consistent with the dynamics of human learning in two-player games [50]. Under 

certain conditions, gradient-like learning can be implemented using covariance-based synaptic plasticity. 

Interestingly, operant matching (not to be confused with probability matching) naturally emerges in this 

framework [51,52]. A model based on attractor dynamics and covariance-based synaptic plasticity has 

been shown to quantitatively account for free operant learning in rats [53]. However, the experimental 

evidence for gradient-based learning, implemented at the level of single synapses, awaits future 

experiments.  

Concluding remarks 
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RL is the dominant theoretical framework to operant learning in humans and animals. RL models 

were partially successful in quantitative modeling of learning behavior and provided important insights 

into the putative role of different brain structures in operant learning. Yet, substantial theoretical as well 

as experimental challenges remain, indicating that these models may be substantially oversimplified. In 

particular, how state-space representations are learned in operant learning remain important challenges for 

future research.  
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Figure 1. Repertoire of possible world models 
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Figure 2. Alternative models of operant learning  
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