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Abstract

The dominant computational approach to model opelearning and its underlying neural
activity is model-free reinforcement learning (Rlblowever, there is accumulating behavioral and
neuronal-related evidence that human (and aninpajamt learning is far more multifaceted. Theosdtic
advances in RL, such as hierarchical and modelebRteextend the explanatory power of RL to account
for some of these findings. Nevertheless, somer atbgects of human behavior remain inexplicableeve
in the simplest tasks. Here we review developmants remaining challenges in relating RL models to
human operant learning. In particular, we emphasia¢ learning a model of the world is an essential
step prior or in parallel to learning the policyRL and discuss alternative models that directiyriea

policy without an explicit world model in terms state-action pairs.
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Model-free RL

The computational problem in many operant learriagks can be formulated in a framework
known asMarkov Decision Processes (MDP) [1]. In MDPs, the world can be in one of eml states,
which determine the consequences of the agactisns with respect to the futureewards and world
states. Apolicy defines the agent behavior at a given situatiorMDP, a policy is a mapping from the
states of the environment to actions to be takearmih those states [1]. Finding the optirpalicy is
difficult because actions may have both immediate lang-term consequences. However, this problem
can be simplified by estimatingalues, the expected cumulative (discounted) rewardscéastsa with
these states and actions and using these valwd®ése the actions (for detailed characterizatioine

mapping from values to actions in humans, see [2]).

Model-free RL, as its name suggests, is a familRbfalgorithms devised to learn the values of
the states without learning the full specificatmfrthe MDP. In a class of model-free algorithmspkm
as temporal-difference learning, the learning efthlues is based on theward-prediction error (RPE),
the discrepancy between the expected reward befat@fter an action is taken (taking into accolsu a
the ensuing obtained reward). The hypothesis tr@btain utilizes model-free RL for operant leagnin
holds considerable sway in the fields of neuroendos. This hypothesis is supported by experiments
demonstrating that in primates, the phasic actieftynid-brain dopaminergic neurons is correlatethwi
the RPE [3,4]. In mice, this correlation was aldmwn to be causal: optogenetic activation of
dopaminergic neurons is sufficient to drive operdedirning, supporting the hypothesis that the
dopaminergic neurons encode the RPE , which is fmedperant learning [5]. Other putative brain
regions for this computation are the striatum, vehastivity is correlated with values of the steded / or
actions [6,7] and the nucleus accumbens and pailidvhich are involved in the selection of the attio
[8]. In addition to its neural correlates, modalefrRL has been used to account for the trial-lay-tri

dynamics (e.g., [2]) and for several robust aggeefeatures of human behavior such as risk avefSipn
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recency [10] and primacy [2]. Moreover, model-frB¢ has been proven useful in the field of

computational psychiatry as a way of diagnosingdaratacterizing different pathologies [11-14].

However, there is also evidence that the corresgrorel between dopaminergic neurons and the
RPE is more complex and diverse than was previdhsiyght [15]. First, dopaminergic neurons increase
their firing rate in response to both surprisinglysitive and negative reinforcements [16,17]. Sdcon
dopaminergic activity is correlated with other adfies of the task, such as uncertainty [18]. Tktind,
RPE is not exclusively represented by dopamingdalitional neuromodulators, in particular serotpnin
are also correlated with the RPE [19]. Finally, sdimdings suggest that reinforcement and punisthmen
signals are not local but rather ubiquitous inttbenan brain [20]. These results challenge the dande

of the anatomically-modular model-free RL as a nhéoleoperant learning.

Model-based RL

When training is intense, task-independent rewavhlliation, e.g. through satiety, has only a
little immediate effect on behavior. This habitledrning is consistent with model-free RL because i
this framework, the value of an action is updately evhen it is executed. By contrast, when trainisg
moderate, the response to reward devaluation istfrate and substantial [21]. This and other behavio
(e.g., planning) is consistent with an alternatRle approach, known asodel-based RL, in which a
model of the world, i.e., the parameters that §pebe MDP is learned prior to choosing a policheT
effect of reward devaluation after moderate trgngan be explained by model-based RL because a
change in a world parameter (e.g., the value ofr¢hneard as a result of satiety) can be used totapda
(off-line) the values of other states and actions.

If the parameters of the MDP are known, one canpuienthe values of all states and actions, for
example by means of dynamic programming or MontdeCamulation. Alternatively, one could choose
an action by expanding a look-ahead decision trekne [1]. However, a full expansion of a look-akle

tree is computationally difficult because the numbiebranches increases exponentially with the Hiteig
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of the tree, so that pruning of the tree is a rergsapproximation. Indeed, a recent study hasestgd
that humans prune the decision-tree, by trimmiragbnes associate with large losses [14].

Whether or not model-based and model-free learairgy implemented by two anatomically
distinct systems is a subject of debate. In suppgbanatomical modularity are findings that the raked
striatum is more engaged during planning whereadatieral striatum is more engaged during choices i
extensively trained tasks [22]. In addition, tkate prediction error, which signals the discrepancy
between the current model and the observed statsitiions is correlated with activity in the intesijetal
sulcus and lateral prefrontal cortex, spatiallyasafed from the main correlate of the RPE in thatrad
striatum [23]. Findings that tend to negate anatammodularity include reports of signatures oftbot

model-based and model-free learning in the vestratum [24].

The curse of dimensionality and the blessing of hiarchical RL

There are also theoretical reasons why the RL rsadiescribed above cannot fully account for
operant learning in natural environments. Firse tomputational problem of finding the values is
bedeviled by the “curse of dimensionality”: the raen of states is exponential with the number of
variable, which define a state [1]. Second, whendtate of the world is only partially known, (i.the
environment is a partially observable MDP (POMDEplying model-free algorithms such as Q-learning
may converge to a solution that is far from optitgabr may fail to converge altogether [25]. One
approach to addressing these problems is to break dhe learning task into a hierarchy of simpler
learning problems, a framework known adierarchical Reinforcement Learning (HRL) [26].
Neuroimaging studies have indeed found neural resgsothat are consistent with sub-goal-related RPE,

as is predicted by HRL [27].

Challenges in relating human behavior to RL algorihms

Despite the many successes of the different RLrigigos in explaining some of the observed

human operant learning behaviors, others aredstiitult to account for. For example, humans te¢ad
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alternate rather than repeat an action after reapia positively surprising payoff. This behavier i
observed both in simple repeated two-alternativeefochoice tasks with probabilistic rewards (also
known as the 2-armed bandit task, Fig. 1A) andhénstock market [28]. Moreover, a recent study dbun
that the behavior of half of the participants if--alternaive version of the bandit task, knownteslowa
gambling task, is better explained by the simpléhad heuristic “win-stay, lose-shift” (WSLS) thay b
RL models [29]. Another challenge to the current fiRbdels is the tremendous heterogeneity in reports
on human operant learning, even in simple bandkstameasured in different laboratories in slightly
different conditions. For example, as was descriieove, the WSLS observed in 4-arm bandit [29] is
inconsistent with the alternation after positivelyrprising payoffs discussed above [28]. Additibnal
probability matching, the tendency to choose an action in proportiorthe probability of reward
associated with that action, has been a subjedebéte over half-a-century. On one hand, there are
numerous reports supporting this law of behaviothbia the laboratory and when humans gamble
substantial amounts of money on the outcome oflifeatituations [30]. On the other hand, there is
abundant literature arguing that people deviatefpsobability matching in favor of choosing the mor
rewarding action (maximization) [31]. Finally, tleeiis substantial heterogeneity not only between
subjects and laboratories but also within subjegts time. A recent study has demonstrated suliatant
day-to-day fluctuations in learning behavior of rkeys in the two-armed bandit task and has shown tha

these fluctuations are correlated with day-to-dagtfiations in the neural activity in the putamag][

Heterogeneity in world model

The lack of uniformity regarding behavior eviensimple tasks could be due to heterogeneity in
the prior expectations of the participants. From éxperimentalist point of view, the two-armed band
task, for example, is simple: the world is charmdegal by a single state and two actions (Figure. 1A)
However, from the participant point of view thesetheoretically, an infinite repertoire of possiorld
models characterized by different definitions assef states and actions. This could be true evesnw

precise instructions are given due, for examplek & trust, inattention or forgetfulness. With pest to
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the actions set, the participant may assume tleat tls only a single available action, the pressingny
button, regardless of its properties (Figure 1Bltednatively, differences in the timing of the hortt
press, the finger used, etcetera, could all defifierent actions. Such precise definition of aatiavhich

is irrelevant to the task, may end with non-optilpahavior. With respect to the states set, thegizant
may assume that there are several states that dlepethe history of actions and / or rewards. For
example, the participant may assume that the statefined by the last action (Fig. 1C), the lagicm
and the last reward, or a function of the longdmgbf actions [33]. Finally, the participant magsame a
strategic game setting such as a matching-penriese g(Figure 1D). These and other possible
assumptions (Figure 1E) may lead to very differpredictions on behavior [34]. In support of this
possibility, experimental manipulations such agrirtions, which are irrelevant to the reward sched
but may change the prior belief about the numbestafes can have a considerable effect on human
behavior [35]. Finally, humans and animals havenb&gown to develop idiosyncratic and stereotyped
superstitious behaviors even in simple laboratetyirgys [36]. If participants fail to recognize theie
structure of a learning problem in simple laborateettings, they may also fail to identify the kelat
states and actions when learning from rewards irab environments. For example, professional

basketball players have been shown to overgenenalien learning from their experience [37].

Learning the world model

Many models of operant learning often take as given the learner has already recognized the
available sets of states and actions (Fig. 2A).ddewhen attempting to account for human behatiey t
fail to consider the necessary preliminary stejdeftifying them (correctly or incorrectly). In ntsioe
learning, classification is often preceded by asupervised dimension-reduction for feature extoacti
[38,39]. Similarly, it has been suggested that apefearning is a two-step process (Figure 2B)ha
first step, the state and action sets are leamoed the history (possibly using priors on the wirldhere
in the second step RL algorithms are utilized twdfithe optimal policy given these sets [40]. An

interesting alternative is that the relevant statéien sets and the policy are learned in par@iigure
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2C). For example, a new approach in RL, knowirfeasire RL, the state set and the values of the states
are learned simultaneously from the history of oltgons, actions and rewards. One crucial propairty
feature RL is that it neither requires nor learnsi@del of the complete observation space, but rathe

learns a model that is based on the reward-relelzsdgrvations [41].

Learning without States

Operant learning can also be accomplished withoutexplicit representation of states and
actions, by directly tuning a parametric policygF2D). A plausible implementation of such directigy
learning algorithms is using stochastic policy-geatl methods [42—44]. The idea behind these methods
is that the gradient of the average reward (widpeet to policy parameter) can be estimated onHine
perturbing a neural network model with noise andsatering the effect of these perturbations on the
stream of payoffs delivered to the learning ag€hianges in the policy in the direction of this mestied
gradient are bound, under certain assumptionsinfave performance. However, local minima may

prevent the learning dynamics from converging @odhtimal solution.

Direct policy methods have been proposed to exgautsong learning [45] and have received
some experimental support [46,47]. In humans, aehfust gradient learning in spiking neurons [48,49]
has been shown to be consistent with the dynanfibsiman learning in two-player games [50]. Under
certain conditions, gradient-like learning can implemented using covariance-based synaptic plgstici
Interestingly, operant matching (not to be confus&tht probability matching) naturally emerges imsth
framework [51,52]. A model based on attractor dyitamand covariance-based synaptic plasticity has
been shown to quantitatively account for free opetearning in rats [53]. However, the experimental
evidence for gradient-based learning, implementedha level of single synapses, awaits future

experiments.

Concluding remarks
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RL is the dominant theoretical framework to opetaatning in humans and animals. RL models
were partially successful in quantitative modelofgearning behavior and provided important inssght
into the putative role of different brain structsiie operant learning. Yet, substantial theoretisaivell
as experimental challenges remain, indicating tivase models may be substantially oversimplified. |
particular, how state-space representations areddan operant learning remain important challsrfge

future research.
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Figure 1. Repertoire ofpossible world models

Figure 1. In this example, a participant is tested in the -armed bandit task(A) From the
experimentalist's point of viescientist caricatur, the world is characterized by a sinstate &) and
two actions: left (bluel) or right (red,R) button pressHowever, from the participa's point of view
there is an infinite repertoire of possible worldbdrls characterized by different sets of states
actions. (B) With respect to traction sets, she may assume that there is onlygéesavailable actior
pressing any button, regardless of its loce (purple, L/R). (C) With respect to the state sets,
participant may assume that the state is defineher last action§ andS, for previousL andR action,
respectively). (D)Moreover, the participant may assuishe is playing gennymatching game with
another human. (Ejhese and other possible assumptions lead tovery different prdictions in the

framework of RL.
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Figure 2. Alternative models of operant learning
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Figure 2. In operantlearning, experience (letrapezoid, composed of present and past observa
actions and rewards ised to learn a policy. (A) Standard RL modelsdsfty assume that the learr
(brain gray icon) haaccess to the relevant states and actset ¢epresented t a bluish world icon)
prior to the learning the policylternative suggestions are that istate and actic sets are learned from
experiencend from prior expectationsifferent world icons) before (Bjr in parallel (C) to the learnir
of policy. (D) Alternatively, theagent may directly learwithout an explicit representation of states
actions, but rather by tuningparametricpolicy (cog wheels icon), e.g., usiatpchastic gradient methc

on this policy's parameters.



