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Stochastic games with short-stage duration

Abraham Neyman∗

April 18, 2013

Abstract

We introduce asymptotic analysis of stochastic games with short-
stage duration. The play of stage k, k ≥ 0, of a stochastic game Γδ
with stage duration δ is interpreted as the play in time kδ ≤ t <
(k+ 1)δ, and therefore the average payoff of the n-stage play per unit
of time is the sum of the payoffs in the first n stages divided by nδ,
and the λ-discounted present value of a payoff g in stage k is λkδg. We
define convergence, strong convergence, and exact convergence of the
data of a family (Γδ)δ>0 as the stage duration δ goes to 0, and study
the asymptotic behavior of the value, optimal strategies, and equilib-
rium. The asymptotic analogs of the discounted, limiting-average,
and uniform equilibrium payoffs are defined. Convergence implies
the existence of an asymptotic discounted equilibrium payoff, strong
convergence implies the existence of an asymptotic limiting-average
equilibrium payoff, and exact convergence implies the existence of an
asymptotic uniform equilibrium payoff.

1 Introduction

Most strategic interactions evolve over time, and are often modeled as a
discrete-time multi-stage game. The discrete-time modeling enables us to
use the classic theory of extensive form games, which entails no conceptual
difficulties. This however comes at implicit costs: players cannot change
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their actions within a stage and additional information about others’ actions
and nature’s moves is obtained only at a discrete set of times. An alternative
modeling of dynamic interactions is continuous-time games, which avoids the
above-mentioned costs, but entails some conceptual difficulties.

The present paper develops a complementary approach that studies the
asymptotic behavior of multi-stage games when the stage duration goes to
zero. We focus on the theory of stochastic games.

A discrete-time stochastic game, introduced by Shapley (1953), proceeds
in stages. The stage payoff is a function g(z, a) of the stage state z and the
stage action a, and the transitions to the next state z′ are defined by condi-
tional probabilities P (z′ | z, a) of the next state z′ given the present state z
and the stage action a. Players’ stage-action choices are made simultaneously
and are observed by all players following the stage play.

Discrete-time stochastic games are multi-stage game-theoretic models
that enable us to account for changes of states between different stages of
the interaction, and where the change is impacted by the players’ actions.
However, no single discrete-time stochastic game can model the case where
the probability of a state change in any short time interval can be positive yet
arbitrarily small. This feature can be analyzed by studying continuous-time
stochastic games, introduced in [14], and studied in, e.g., [14, 2, 3, 4, 8]. An
alternative and complementary approach is to study the asymptotic behavior
of discrete-time stochastic games, where the individual stage represents short
time intervals that converge to zero and the transition probabilities to a new
state also converge to zero.

The continuous-time stochastic game model provides us with a tractable
analytic model (whose results are neatly stated), but, as mentioned earlier,
the model entails some conceptual difficulties. The complementary asymp-
totic approach builds on the classic discrete-time (well-defined) game model,
and therefore avoids the conceptual issues of continuous-time games. The
results of the asymptotic approach supplement and cement the conclusions
of the analytic continuous-time model.

We consider a family of discrete-time stochastic games Γδ, where the
positive parameter δ > 0 represents the stage duration. The sets of players
N , states S, and actions A are independent of the parameter δ, and the
conditional transition probabilities Pδ and the payoff function gδ depend on
the parameter δ. We study the asymptotic behavior of the strategic analysis
of Γδ as δ goes to zero.

The payoff function gδ describes the stage payoff in Γδ. As the stage
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duration is δ the stage payoff per unit of time is gδ/δ. One natural condition,
(g.1), on the family of discrete-time stochastic games Γδ is that the stage
payoff function per unit of time is a function of the current state and action,
and independent of δ, i.e., gδ/δ = g, where g : S×A→ RN . A less restrictive
condition, (g.2), is that the stage payoff function per unit of time converges
(as δ goes to zero) to a payoff function g : S × A → RN . In the asymptotic
results, the distinction between assumptions (g.1) and (g.2) is immaterial.

The transition rates, pδ, are the functions defined on S × S × A by
pδ(z

′, z, a) = Pδ(z
′ | z, a) if z′ 6= z and pδ(z

′, z, a) = Pδ(z
′ | z, a) − 1 if

z′ = z. The transition rate pδ(z
′, z, a) represents the difference between the

probability that the next state will be z′ and the probability (0 or 1) that the
current state is z′ when the current state is z and the current action profile
is a. Note that it follows that for every (z, a) the sum of pδ(z

′, z, a) over
all states z′ is zero and pδ(z

′, z, a) is nonnegative whenever z′ and z are two
distinct states. It is convenient to express our conditions on the conditional
transition probabilities Pδ as conditions on the transition rates pδ.

There are several natural conditions on the transition rates function pδ,
each reflecting a dependence of pδ on the stage duration parameter δ. One
such condition, (p.1), is that the transition rates per unit of time is constant,
i.e., for each δ > 0, pδ/δ = µ, where µ : S × S × A → R. A weaker
asymptotic condition, (p.2), called convergence, is that the equality with µ
holds in the limit, i.e., for all triples (z′, z, a) of states z′, z and action profile
a, pδ(z

′, z, a)/δ converges (as δ goes to zero) to a limit µ(z′, z, a). Condition
(p.3), called strong convergence, requires that condition (p.2) hold and that
pδ(z

′, z, a) > 0 if and only if µ(z′, z, a) > 0. Condition (p.1) implies condition
(p.3) and condition (p.3) implies condition (p.2).

An exact family of discrete-time stochastic games Γδ is one that obeys
(g.1) and (p.1). A family of discrete-time stochastic games Γδ is said to
converge in data if it obeys (g.2) and (p.2), and it is said to converge strongly
if it obeys (g.2) and (p.3).

The above-mentioned convergence conditions on a family (Γδ)δ>0 are
stated as conditions on the data of the games in the family. The data con-
vergence condition seems natural, and therefore the study of the asymptotic
behavior of equilibria of a data-convergent family is of interest. However,
one may wonder if the strategic dynamics of some other families of games
that do not converge in data have a limit, and therefore such families deserve
an asymptotic analysis as well. This leads us to the study of convergence
conditions on a family (Γδ)δ>0 that depend on the stochastic processes of
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payoffs and states that are defined by the initial state and a strategy profile
σ, in particular, when the strategy profile σ is stationary. This leads to our
definition of stationary convergence. Roughly speaking, stationary conver-
gence states that for every stationary strategy profile σ and real time t, both
the cumulative payoff (in Γδ) up to time t and the distribution of the state
at time t converge as the stage duration δ goes to zero.

Proposition 1 asserts that stationary convergence is equivalent to data
convergence. This result shows that the continuous-time model (see, e.g.,
[8]) captures all possible limits of “nicely behaved” families of discrete-time
stochastic games with short-stage duration.

Data (or its equivalent stationary) convergence is sufficient for our asymp-
totic results (e.g., Theorem 1 and Theorem 8) on the stationary (as well as
the nonstationary) discounted games. In these results we associate with a
discount rate ρ and a stage duration δ the discount factor 1 − ρδ. These
results remain intact if the (δ, ρ)-dependent discount factor λδ,ρ is such that
the limit, as δ goes to zero, of (1− λδ,ρ)/δ exists and equals ρ. For example,
λδ,ρ = e−ρδ.

The unnormalized ρ-discounted payoff of a play (z0, a0, z1, . . .) of the game
Γδ is

∑∞
m=0(1 − ρδ)mgδ(zm, am). The corresponding ρ-discounted game is

denoted by Γδ,ρ. In the two-person zero-sum case, Section 4.1 shows that,
given a converging family (Γδ)δ>0 of two-person zero-sum games, 1) the value
of Γδ,ρ, denoted by Vδ,ρ, converges as δ goes to zero, and 2) there is a stationary
strategy σ that is ε(δ)-optimal in the game Γδ,ρ), where ε(δ goes to zero as δ
goes to zero.

An asymptotic ρ-discounted stationary equilibrium strategy of the family
(Γδ)δ>0 of non-zero-sum stochastic games is a profile σ of stationary strategies
that is an ε(δ)-equilibrium of Γδ, where ε(δ) → 0 as δ goes to zero. In the
discounted non-zero-sum case, we prove (Theorem 8) that (for every ρ > 0)
a converging family has an asymptotic ρ-discounted stationary equilibrium
strategy.

The average (per unit of time) payoff to player i up to time s (in the
game Γδ) is giδ(s) := 1

s

∑
0≤m<s/δ g

i
δ(zm, am), where giδ is the i-th coordinate

of gδ. The lim inf, respectively lim sup, game Γδ is the game where the payoff
to player i is gi

δ
:= lim infs→∞ g

i
δ(s), respectively ḡiδ := lim sups→∞ g

i
δ(s). The

limiting-average value or equilibrium payoff is a payoff v such that for every
ε > 0, there is a strategy profile such that 1) for every player i, his payoff in
the lim inf game is at least vi− ε, and 2) every unilateral deviation of player
i results in a payoff to him in the lim sup game of no more than vi + ε.
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For every δ > 0, vδ,ρ := ρVδ,ρ converges to a limit (denoted by vδ,0) as
ρ→ 0+ [1]. The limit vδ,0 is the uniform and limiting-average value of Γδ [5].
Convergence in data is not sufficient to guarantee the convergence of vδ,0 as
δ goes to zero (Remark 10). Strong convergence implies that vδ,ρ converges
as δ goes to zero uniformly in ρ (Theorem 2), and therefore vδ,0 converges as
δ goes to zero.

A family (Γδ)δ>0 of two-person zero-sum stochastic games has an asymp-
totic limiting-average value v if for every ε > 0 there are strategies σδ of player
1 and τδ of player 2 and a duration δ0 > 0, such that for every 0 < δ < δ0,
strategy σ of player 1, and strategy τ of player 2, ε + Ez

σδ,τ
g
δ
≥ v(z) ≥

−ε+ Ez
σ,τδ

ḡδ.
A family (Γδ)δ>0 of non-zero-sum stochastic games has an asymptotic

limiting-average equilibrium payoff v if for every ε > 0 there are strategy
profiles σδ and a duration δ0 > 0, such that for every 0 < δ < δ0, player i,
and strategy τ i of player i,

ε+ Ez
σδ
gi
δ
≥ vi(z) ≥ −ε+ Ez

σ−iδ ,τ i
ḡiδ(s).

A family (Γδ)δ>0 that converges strongly has an asymptotic limiting-
average value in the zero-sum case (Theorem 4), and an asymptotic limiting-
average equilibrium payoff in the non-zero-sum case (Theorem 11).

A family (Γδ)δ>0 of two-person zero-sum stochastic games has an asymp-
totic uniform value v if for every ε > 0 there are strategies σδ of player 1
and τδ of player 2, a duration δ0 > 0, and a time s0 > 0, such that for
every 0 < δ < δ0, s > s0, strategy σ of player 1, and strategy τ of player 2,
ε+ Ez

σδ,τ
gδ(s) ≥ v(z) ≥ −ε+ Ez

σ,τδ
gδ(s).

A family (Γδ)δ>0 of non-zero-sum stochastic games has an asymptotic
uniform equilibrium payoff v if for every ε > 0 there are strategy profiles σδ,
a duration δ0 > 0, and a time s0 > 0, such that for every 0 < δ < δ0, s > s0,
player i, and strategy τ i of player i,

ε+ Ez
σδ
giδ(s) ≥ vi(z) ≥ −ε+ Ez

σ−iδ ,τ i
giδ(s).

An exact family of games Γδ has an asymptotic uniform value in the zero-
sum case (Theorem 6), and an asymptotic uniform equilibrium payoff in the
non-zero-sum case (Theorem 12).
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2 The model and results

Throughout the paper, the set of players N , the set of states S, and the set
of actions A, are finite. The set of feasible actions may depend on the state
z ∈ S. We denote by Ai(z) the set of actions of player i ∈ N in state z ∈ S.
A(z) is the set of action profiles at state z, A(z) = ×i∈NAi(z). For notational
convenience we set A = {(z, a) : z ∈ S, a ∈ A(z)}.

The data of the stochastic game Γδ that depend on the parameter δ are
the RN -valued payoff function gδ that is defined on A and the conditional
probabilities Pδ(z

′ | z, a) that are defined for all z′ ∈ S and (z, a) ∈ A. The
payoff function gδ defines the stage payoff gδ(z, a) ∈ RN as a function of the
stage state z and the stage action profile a. The i-th coordinate of a vector
g ∈ RN is denoted by gi. The conditional probabilities Pδ(z

′ | z, a) specify
the conditional probability of the next state being z′ conditional on playing
the action profile a at the current state z.

The conditional probabilities Pδ(z
′ | z, a) obey Pδ(z

′ | z, a) ≥ 0 and∑
z′∈S Pδ(z

′ | z, a) = 1. We describe the conditional probabilities by specify-
ing the function pδ(z

′, z, a) that is defined on S ×A by pδ(z
′, z, a) = Pδ(z

′ |
z, a) if z′ 6= z and pδ(z

′, z, a) = Pδ(z
′ | z, a) − 1 if z′ = z. Obviously,

pδ(z
′, z, a) ≥ 0 if z′ 6= z, p(z, z, a) ≥ −1, and

∑
z′∈S pδ(z

′, z, a) = 0.
The setH of plays of Γδ is the set of all sequences h = (z0, a0, . . . , zk, ak, . . .)

with (zk, ak) ∈ A. The events are the elements of the minimal σ-algebra H
of subsets of H for which each one of the maps H 3 h = (z0, a0, . . .) 7→
(zk, ak) ∈ A, k ≥ 0, is measurable. We denote by Hk the σ-algebra gener-
ated by (z0, a0, . . . , zk).

The set of strategies in the stochastic game Γδ is independent of δ. The
transition probabilities, however, do depend on δ. For every strategy profile
σ = (σi)i∈N we denote by P z

δ,σ the probability distribution defined by the
transition probabilities of the game Γδ, the initial state z0 = z, and the
strategy profile σ, on the measurable space (H,H) of plays. The expectation
with respect to the probability P z

δ,σ is denoted by Ez
δ,σ. The parameter δ that

appears in the probability and expectation above is formally needed as the
transition probabilities depend on δ. However, wherever there is an implicit
reference to the parameter δ, we suppress (the formally needed) δ. E.g., we
write Ez

σδ
, for short, instead of the more explicit Ez

δ,σδ
.
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2.1 The discounted games

Given a discount factor 0 < λ < 1, the discrete-time stochastic game Γ
with a discount factor λ is the game where the (unnormalized) valuation of
the stream of payoffs (gm = g(zm, am))m≥0 is

∑∞
m=0 λ

mgm. The normalized
valuation is the unnormalized one times 1−λ. The generalization to the case

of individual discount factors is straightforward. Given a vector
−→
λ = (λi)i∈N

of discount factors the game with discount factors
−→
λ is the game where the

unnormalized (respectively, normalized) valuation of player i of the stream
of vector payoffs (gm)m≥0 is

∑∞
m=0 λ

m
i g

i
m (respectively, (1−λi)

∑∞
m=0 λ

m
i g

i
m).

We study the family of discrete-time stochastic games Γδ with discount
factors λδ that depend on the stage duration parameter δ. We require that
the limit, as δ goes to zero, of the valuation of a unit payoff per unit of
time (i.e., gδ = δ for all δ > 0) with the discount factor λδ, exist. This
requirement is equivalent to the existence of the limit of 1−λδ

δ
as δ goes to

zero. A family of δ-dependent discount factors λδ is called admissible if
limδ→0+

1−λδ
δ

exists. The limit is called the asymptotic discount rate (and is

equal to limδ→0+
− lnλδ
δ

). Two examples of admissible δ-dependent discount
factors, with asymptotic discount rate ρ > 0, are λδ = e−ρδ and λδ = 1− ρδ.

A family of δ-dependent discount factors, λδ, is admissible and has an
asymptotic discount rate ρ > 0, if and only if for all streams xδ = (gδ,0, gδ,1, . . .)
of payoffs, with uniformly bounded payoffs per unit of time (i.e., |gδ,m| ≤ Cδ),
the difference between the valuation of xδ according to the discount factors
λδ and its valuation according to the discount factors e−ρδ goes to zero as δ
goes to zero.

Our asymptotic results on the δ-dependent discounted games depend only
on the asymptotic discount rate ρ (and not on the exact choice of the δ-
dependent discount factor with asymptotic discount rate ρ). Therefore, it
suffices to select, for each ρ > 0, an admissible family of δ-dependent dis-
count factors λδ,ρ with asymptotic discount rate ρ. Our choice of the δ-
dependent discount factor with asymptotic discount rate ρ is λδ,ρ = 1 − ρδ.
This simplifies some parts of the presentation.

The ρ-discounted game, denoted by Γδ,ρ, is the game Γδ with discount
factor 1 − ρδ. In the zero-sum case, we say that the family (Γδ)δ>0 of two-
person zero-sum games1 has an asymptotic ρ-discounted value Vρ if the values

1Henceforth, whenever we discuss a value concept of a family (Γδ), we will omit the
statement of the implicit condition that it is a family of two-person zero-sum games.
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of Γδ,ρ, denoted by Vδ,ρ, converge to Vρ as δ goes to zero. Theorem 1 asserts
that a family (Γδ)δ>0 that converges in data has an asymptotic ρ-discounted
value. In addition, it provides a system of S equations that has a unique
solution, which equals Vρ, and proves the existence of a (δ-independent)
stationary strategy that is ε(δ)-optimal in Γδ,ρ, where ε(δ) → 0 as δ goes
to zero. In the non-zero-sum case, Theorem 8 asserts that a family (Γδ)δ>0

that converges in data has a (δ-independent) stationary strategy that is an
ε(δ)-equilibrium of Γδ,ρ, where ε(δ)→ 0 as δ goes to zero.

Section 4.1 notes that the map ρ 7→ Vρ is semialgebraic and bounded, and
therefore vρ := ρVρ =

∑∞
k=0 ck(z)ρk/M in a right neighborhood of zero. This

fact, in conjunction with the covariance properties of vρ as a function of (g, µ)
(see Section 4.1), is used in the study of the asymptotic uniform value (see
Section 4.5). It shows that for an exact family (Γδ)δ>0 there is an integrable

function ψ : [0, 1]→ R+ and δ0 > 0 such that ‖ρVδ,ρ − ρ′Vδ,ρ′‖ ≤
∫ ρ′
ρ
ψ(x) dx

for 0 < ρ < ρ′ ≤ 1 and δ ≤ δ0.
The covariance properties (in conjunction with [10, Theorem 6]) are used

in the proof of Theorem 2 that asserts that if Γδ converges strongly, then vδ,ρ
(:= ρVδ,ρ) converges, as δ goes to zero, uniformly on 0 < ρ < 1.

2.2 The nonstationary discounted games

A time-separable valuation u of streams of payoff is represented by a pos-
itive measure w on the nonnegative integers. It is given by the valuation
function uw(g0, g1, . . .) =

∑∞
m=0w(m)gm. The valuation function uw is (well)

defined over all bounded streams (g0, g1, . . .) of payoffs. The valuation uw is
normalized if the total mass of w equals 1, i.e.,

∑∞
m=0w(m) = 1. The general-

ization to the case of individual time-separable valuations is straightforward.
Given a vector −→w = (wi)i∈N of positive measures on the nonnegative integers
the game with valuation u−→w is the game where the valuation of player i of
the stream of vector payoffs (gm)m≥0 is

∑∞
m=0 w

i(m)gim. The discrete-time
stochastic game Γ with the valuation u−→w is denoted by Γ−→w .

The set of all probability measures on a set ∗ is denoted by ∆(∗). As Ai(z)
is finite, the set X i(z) := ∆(Ai(z)) is a compact subset of a Euclidean space.
The set of profiles of Markovian strategies in a discrete-time stochastic game
is identified with the cartesian product ×(i,z,n)∈N×S×NX

i(z), which is a com-
pact space in the product topology. Let Γ be a discrete-time stochastic game
(with finitely many states and actions). A profile σ of Markovian strategies is
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an equilibrium of Γ−→w whenever: 1) for every k ∈ N, −→w k is a vector of positive
measures on the nonnegative integers, 2) for every k ∈ N, σ(k) is a profile of
Markovian strategies that is an equilibrium of Γ−→w k , 3) σ(k)→k→∞ σ (in the
product topology), and 4) for every i ∈ N ,

∑∞
m=0 |wik(m)−wi(m)| →k→∞ 0.

By backward induction, if −→w has finite support, the game Γ−→w has an equi-
librium in Markovian strategies. Therefore, the above-mentioned comment
implies that a discrete-time stochastic game with individual time-separable
evaluations has an equilibrium in Markovian strategies. The discrete-time
stochastic game Γδ with the individual time-separable valuation −→w δ is de-
noted by Γδ,−→w δ . In this game, the payoff to player i of a play (z0, a0, . . .)
is giδ(w

i
δ) :=

∑∞
m=0w

i
δ(m)giδ(zm, am). The discrete-time stochastic game Γδ

with the common time-separable valuation wδ, denoted by Γδ,wδ , is the game
Γδ,−→w δ with wiδ = wδ for every player i.

If −→w = (wi)i∈N is a profile of nonnegative measures on [0,∞], we say that
the vector −→w δ = (wiδ)i∈N of N measures on N∪{∞} converges (as δ → 0+) to
−→w if 1) −→w δ(N∪{∞}) converges (as δ goes to 0) to −→w ([0,∞]), and 2) for every
0 ≤ t < ∞ there is a family of nonnegative integers mδ with δmδ →δ→0+ t,
and such that

∑mδ
m=0
−→w δ(m) →δ→0+

−→w ([0, t]). Note that by identifying the
N -vector measure −→w δ with the N -vector measure −→w ′δ on [0,∞] (the one-point
compactification of [0,∞)) that is supported on {δm : m ≥ 0} ∪ {∞} and
satisfies −→w ′δ([δm, δ(m+ 1))) = −→w δ(m) and −→w ′δ(∞) = −→w δ(∞), our definition
of convergence here is equivalent to w∗ convergence of measures on compact
spaces. Explicitly, −→w δ converges as δ → 0+ to the N -vector measure −→w
on [0,∞] if for every continuous function f on [0,∞],

∫
[0,∞]

f(x) d−→w ′δ(x)

(which equals f(∞)−→w δ(∞) +
∑∞

m=0 f(δm)−→w δ(δm)) converges as δ → 0+ to∫
[0,∞]

f(x) d−→w (x).

In this section we focus on the case that −→w δ is supported on N and −→w
is supported on [0,∞). The more general convergence definition (above) is
used in subsequent parts of the paper.

Of special interest are the nonstationary discounting valuations and their
limits. In the discrete-time model, the nonnegative measure w on N∪{∞} is
called a nonstationary discounting valuation (measure) if w(m) ≥ w(m+ 1).
The vector measure −→w is said to be nonstationary discounting if each of its
components wi is a nonstationary discounting. A nonnegative measure w on
[0,∞] is said to be nonstationary discounting if for every s > 0 the function
[0,∞) 3 t 7→ w([t, t + s) is nonincreasing in t. Note that if the family of
nonstationary discounting measures wδ on N converges to the nonnegative
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measure w on [0,∞], then w is a nonstationary discounting measure.
Let −→w be a nonstationary discounting N -vector measure on [0,∞). We

say that v ∈ RN×S is an asymptotic −→w equilibrium payoff of the family of
N -person games (Γδ)δ>0, if for every ε > 0 and a family of nonstationary
discounting N -vector measures −→w δ on N that converges to −→w , v is an ε-
equilibrium payoff of Γδ,−→w δ for every δ > 0 sufficiently small.

Let w be a nonstationary discounting measure on [0,∞). We say that
v ∈ RS is an asymptotic w value of the family of two-person zero-sum games
(Γδ)δ>0, if for every ε > 0 and a family of nonstationary discounting measures
wδ on N that converges to w, the value vδ of Γδ,wδ satisfies |vδ(z)−v(z)| < ε for
every δ > 0 sufficiently small and state z. Note that v ∈ RS is an asymptotic
w value of the family of two-person zero-sum games (Γδ)δ>0 if and only if
(v,−v) is an asymptotic (w,w) equilibrium payoff of (Γδ)δ>0.

Theorem 9 asserts (in particular) that if (Γδ)δ>0 converges in data, then
for every nonstationary discounting N -vector measure −→w on [0,∞) the family
(Γδ)δ>0 has an asymptotic −→w equilibrium payoff. In addition, if the nonsta-
tionary discounting N -vector measure −→w δ converges (as δ goes to 0) to the
N -vector measure −→w on [0,∞), then for every ε > 0 there is δ0 > 0 and
a family of Markovian strategy profiles σδ, such that 1) for 0 < δ < δ0,
σδ is an ε-equilibrium of Γδ,−→w δ and its corresponding payoff is within ε of
an asymptotic −→w equilibrium payoff v, and 2) σδ converges to a profile of
continuous-time Markov strategies2. In Section 3.2 we define the convergence
of Markovian strategies.

Theorem 9 implies in particular that a finite-horizon continuous-time
stochastic game has an ε-equilibrium in Markov strategies. [4] shows that a
finite-horizon continuous-time stochastic game need not have an equilibrium
in Markov strategies. Therefore, it is impossible to require (in the additional
part) that σδ be an equilibrium (rather than an ε-equilibrium) of Γδ,−→w δ and
at the same time converge to a profile of continuous-time Markov strategies.

In several dynamic interactions, the game payoff is composed of stage pay-
offs and a terminal payoff. Such games are also useful in backward induction
arguments. For example, in order to find an equilibrium (or an approximate
equilibrium) of an extensive form game, a classical procedure is to replace a
subgame of the game with a terminal node whose payoff equals an equilibrium
(or approximate equilibrium) payoff of the subgame. An equilibrium (or ap-

2A continuous-time strategy σ is a mixed-action-valued measurable function defined on
S × R.
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proximate equilibrium) of the original game is obtained by patching together
an equilibrium (or an approximate equilibrium) of the truncated game with
an equilibrium (or approximate equilibrium) of the subgame. This motivates
the definition of the following useful family of games.

Let −→w δ = (wiδ)i∈N be a vector of positive measures on N, mδ > 0, and let
νδ = (νiδ)i∈N be a vector of N payoff functions νiδ : A → R. The game Γmδ,νδ

δ,−→w δ
is the game Γδ where the valuation of player i of the play (z0, a0, z1, . . .) is
the sum of two terms: νiδ(zmδ , amδ) +

∑∞
m=0w

i
δ(m)giδ(zm, am). The first term

accounts for a one-time (e.g., terminal) payoff. This variation enables us to
view games like soccer, where the objective is to reach the best score at the
end of the game, as stochastic games.

We say that (mδ, νδ) converges to (t, ν), where 0 ≤ t < ∞ and ν : A →
RN , if 1) νδ(z, a) converges to ν(z, a) for all (z, a) ∈ A, and 2) δmδ converges
to t as δ goes to zero.

Let −→w be a nonstationary discounting N -vector measure on [0,∞), 0 ≤
t < ∞, and ν : A → RN . The N × S payoff vector v ∈ RN×S is called an
asymptotic (−→w , t, ν) equilibrium payoff of the family (Γδ)δ>0, if for every 1)
family of nonstationary discounting N -vector measure −→w δ on N that con-
verges (as δ goes to 0) to −→w , 2) mδ ∈ N and νδ : A → RN such that (mδ, νδ)
converges to (t, ν), and 3) ε > 0, there is δ0 > 0, such that for 0 < δ < δ0,
Γmδ,νδ
δ,−→w δ

has an ε-equilibrium payoff within ε of v.

Theorem 9 asserts if 1) −→w is a nonstationary discounting N -vector mea-
sure on [0,∞), 2) 0 ≤ t < ∞, and 3) ν : A → RN , then a family (Γδ)δ>0

that converges in data has an asymptotic (−→w , t, ν) equilibrium payoff. In ad-
dition, if 1) −→w δ is a nonstationary discounting N -vector measure on N that
converges (as δ goes to 0) to −→w , and 2) mδ ∈ N and νδ : A → RN are such
that (mδ, νδ) converges to (t, ν), then for every ε > 0 there are 1) δ0 > 0,
2) Markov strategy profiles σδ, and 3) a continuous-time Markov strategy
profile σ, such that 1) for 0 < δ < δ0, σδ is a ε-equilibrium of Γmδ,νδ

δ,−→w δ
with a

payoff within ε of an asymptotic (−→w , t, ν) equilibrium payoff v, and 2) the
Markov strategy profiles σδ converge w∗ to σ.

2.3 The limiting-average games

The classic limiting-average valuation of a stream (g0, g1, . . .) of payoffs is
the limit of the average payoff per stage, limn→∞

1
n

∑
0≤m<n gm, if the limit

exists. The interpretation is that the stage duration is one unit of time, and

11



therefore the average 1
n

∑
0≤m<n gm represents the average payoff per unit

of time. In studying the limiting-average valuation of streams (gδ,0, gδ,1, . . .)
of payoffs in Γδ, one has to take into account that the stage duration is δ.
Therefore the average payoff per unit of time up to time s is (giδ(s))i∈N = gδ(s)
(= 1

s

∑
m:0≤mδ<s gδ,m). In the two-person zero-sum case, the set of players is

N = {1, 2} and we write g for g1 and gδ for g1
δ . No confusion should result.

The averages giδ(s) need not converge as s goes to infinity. Therefore,
in defining the limiting-average (value or) equilibrium payoff v = (vi)i∈N ,
we require that for every ε > 0 the (ε-optimal or) ε-equilibrium strategy
result in a distribution on streams of payoffs such that the expectation of
gi
δ

(= lim infδ→0+ g
i
δ(s)) is within ε of v, and no unilateral deviation by a

player, say player i, can result in a distribution on streams of payoffs with
an expectation of ḡiδ (= lim sup giδ(s)) greater than vi + ε.

Note that if wδ,s is the probability measure on N with wδ,s(m) = 1/ds/δe
(where d∗e denotes the smallest positive integer that is ≥ ∗) if mδ < s
and wδ,s(m) = 0 otherwise, then giδ(s) = giδ(wδ,s). For each δ > 0, the
probability measures wδ,s, s > 0, are the extreme points of the convex set
M1

d (N) of nonstationary discounting probability measures wδ on N. Indeed,
wδ =

∑∞
m=1(wδ(m− 1)−wδ(m))mwδ,mδ and

∑∞
m=1(wδ(m− 1)−wδ(m))m =

1. As
∑k

m=1(wδ(m − 1) − wδ(m))m ≤ wδ(0)k2 →wδ(0)→0+ 0, we deduce
the following (known) property of the lim inf valuation gi

δ
and the lim sup

valuation ḡiδ.

gi
δ

= lim
η→0+

inf{giδ(wδ) : wδ ∈M1
d (N) with wδ(0) < η}, and

ḡiδ = lim
η→0+

sup{giδ(wδ) : wδ ∈M1
d (N) with wδ(0) < η}.

A two-person zero-sum discrete-time stochastic game (with finitely many
states and actions) has a limiting-average value [5]. However, this does not
imply that a convergent family (Γδ)δ>0 has an asymptotic limiting-average
value. A non-zero-sum discrete-time stochastic game (with finitely many
states and actions) has a limiting-average correlated equilibrium payoff [11],
but it is unknown if it has a limiting-average equilibrium payoff.

Recall that v ∈ RS is an asymptotic limiting-average value of the family
(Γδ)δ>0 if for every ε > 0 there are strategies σδ of player 1 and τδ of player
2 and a duration δ0 > 0, such that for every strategy τ of player 2, strategy
σ of player 1, and 0 < δ < δ0, we have

ε+ Ez
σδ,τ

g
δ
≥ v(z) ≥ −ε+ Ez

σ,τδ
ḡδ.
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The definition implies that a family (Γδ)δ>0 has at most one asymptotic
limiting-average value.

Recall that v ∈ RN×S is an asymptotic limiting-average equilibrium payoff
of the family (Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ and
a duration δ0 > 0, such that for every strategy τ i of player i and every
0 < δ < δ0, we have

ε+ Ez
σδ
gi
δ
≥ vi(z) ≥ −ε+ Ez

σ−iδ ,τ i
ḡiδ.

We prove that a family (Γδ)δ>0 that converges strongly has an asymptotic
limiting-average value in the zero-sum case (Theorem 4), and an asymptotic
limiting-average equilibrium payoff in the non-zero-sum case (Theorem 11).

A variation of the limiting-average value, respectively, limiting-average
equilibrium payoff, is the weak limiting-average value, respectively weak limiting-
average equilibrium payoff, obtained by exchanging the order of the limiting
and the expectation operations. Therefore, we say that v ∈ RN×S is an
asymptotic weak limiting-average equilibrium payoff of the family (Γδ)δ>0 if
for every ε > 0 there are strategy profiles σδ and a duration δ0 > 0, such
that for every strategy τ i of player i and every 0 < δ < δ0, we have

ε+ lim inf
s→∞

Ez
σδ
giδ(s) ≥ vi(z) ≥ −ε+ lim sup

s→∞
Ez
σ−iδ ,τ i

giδ(s).

In the general model of repeated games (which includes repeated games
with incomplete information), the existence of a limiting-average (value or)
equilibrium payoff implies the existence of a weak limiting-average (value or)
equilibrium payoff, but not vice versa. In the game models studied in the
present paper, all results that we can prove regarding the weak limiting-value
hold also for the limiting-average value. Therefore, no special consideration
is given to these weaker concepts. It should be noted, however, that in the
analogous study of the general model of repeated games, in particular in
repeated games with incomplete information, the limiting-average value or
equilibrium payoff will typically not exist, while the weak limiting-average
value and equilibrium payoff may exist in some of these models.

2.4 The mixed discounting and limiting-average games

The mixed time-separable and the limiting-average (respectively, the weak
limiting-average) valuation of payoffs is a positive linear combination of a
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time-separable valuation uw and the limiting-average (respectively, the weak
limiting-average) valuation. It is represented by a measure w on N ∪ {∞},
where w(∞) represents the weight given to the limiting-average (or weak
limiting-average) valuation, and w(m) represents the weight of the payoff
at stage m ∈ N. A normalized mixed time-separable and limiting-average
(or weak limiting-average) valuation of payoffs is a convex combination of a
normalized time-separable valuation uw and the limiting-average (or the weak
limiting-average) valuation, and is represented by a probability measure on
N ∪ {∞}.

Let −→w δ = (wi)i∈N be a vector of positive measures on N ∪ {∞}, mδ > 0,
and let νδ = (νiδ)i∈N be a vector of N payoff functions νiδ : A → R. The game
Γmδ,νδ
δ,−→w δ

is the game Γδ where the valuation of player i of the play (z0, a0, z1, . . .)
is the sum of three terms

νiδ(zmδ , amδ) + wiδ(∞) lim
s→∞

giδ(s) +
∞∑
m=0

wiδ(m)giδ(zm, am),

if the limit exists.
The limit of giδ(s) as s → ∞ need not exist. Therefore, in defining (the

value or) an equilibrium payoff v of Γmδ,νδ
δ,−→w δ

, we require that for every ε > 0 the

(ε-optimal or) ε-equilibrium strategy result in a distribution on plays such
that the expectation of the νiδ(zmδ , amδ)+w

i
δ(∞)gi

δ
+
∑∞

m=0w
i
δ(m)giδ(zm, am) is

within ε of vi, and no unilateral deviation by a player, say player i, can result
in a distribution on plays with an expectation of νiδ(zmδ , amδ) + wiδ(∞)ḡiδ +∑∞

m=0w
i
δ(m)giδ(zm, am) greater than vi + ε.

Theorem 13 asserts that if 1) (Γδ)δ>0 is an exact family, 2) the nonsta-
tionary discounting N -vector measure −→w δ converges (as δ goes to 0) to the
N -vector measure −→w on [0,∞], and 3) (mδ, νδ) converges to (t, ν), then for
every ε > 0 there are strategy profiles σδ, an N × S vector v, and δ0 > 0,
such that for 0 < δ < δ0, σδ is an ε-equilibrium of Γmδ,νδ

δ,−→w δ
with a payoff within

ε of v.

2.5 The uniform games

In a uniform (value or) equilibrium payoff v, we require that for every ε > 0
there be a time s0 and a strategy profile for which for every s > s0 the
expectation of gδ(s) is within ε of v, and that there be no unilateral deviation
by a player, say player i, and a time s > s0 such that the expectation of giδ(s)
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is more than vi + ε. It is known that a uniform value exists in the zero-sum
case (with finitely3 many states and actions) [5]. In the discrete-time non-
zero-sum case (with finitely many states and actions), (a uniform correlated
equilibrium payoff exists [11], but) it is unknown if a uniform equilibrium
payoff exists in this case.

We say that v ∈ RS is an asymptotic uniform value of the family (Γδ)δ>0

if for every ε > 0 there are 1) a time s0 > 0, 2) a duration δ0 > 0, and 3)
strategies σδ of player 1 and τδ of player 2, such that for all strategies τ of
player 2 and σ of player 1, duration 0 < δ < δ0, and time s > s0, we have

ε+ Ez
σδ,τ

gδ(s) ≥ v(z) ≥ −ε+ Ez
σ,τδ

gδ(s).

The definition implies that a family (Γδ)δ>0 has at most one asymptotic
uniform value.

Similarly, we say that v ∈ RN×S is an asymptotic uniform equilibrium
payoff of the family (Γδ)δ>0 if for every ε > 0 there are 1) a time s0 > 0, 2)
a duration δ0 > 0, and 3) strategy profiles σδ, such that for every player i,
strategy τ i of player i, duration 0 < δ < δ0, and time s > s0, we have

ε+ Ez
σδ
giδ(s) ≥ vi(z) ≥ −ε+ Ez

σ−iδ ,τ i
giδ(s).

An exact family has an asymptotic uniform value in the zero-sum case
(Theorem 6), and an asymptotic uniform equilibrium payoff in the non-zero-
sum case (Theorem 12).

Remark 1 The existence of an asymptotic uniform equilibrium payoff has
the following corollaries.

If v is the asymptotic uniform equilibrium payoff of a family (Γδ)δ>0 then
for every ε > 0 there is δ0 > 0 such that if 0 < δ < δ0 and −→w δ = (wi)i∈N is a
profile of nonstationary discounting probability measures on N with wiδ(0) <
δδ0, then the game Γδ,w has an ε-equilibrium payoff within ε of v.

2.6 The robust nonstationary discounted solutions

Given a nonstationary discounting measure w on [0,∞], we define gi
δ
(w) by

gi
δ
(w) := lim inf

wδ→w
giδ(wδ) and ḡiδ(w) := lim sup

wδ→w
giδ(wδ),

3Without the assumption of finitely many actions a uniform value need not exist [13].
The assumption of finitely many states is obviously needed.
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where the lim inf and lim sup are over all nonstationary discounting measures
wδ on N that converge to w. If 1∞ denotes the probability measure on [0,∞]
with 1∞(∞) = 1, then gi

δ
(1∞) = gi

δ
and ḡiδ(1∞) = ḡiδ.

Fix a nonstationary discounting measure w on [0,∞] and a profile −→w =
(wi)i∈N of nonstationary discounting measures wi on [0,∞].

We say that v ∈ RS is an asymptotic w-limiting-average value of the
family (Γδ)δ>0 if for every ε > 0 there are strategies σδ of player 1 and τδ of
player 2, and a duration δ0 > 0, such that for every strategy τ of player 2,
strategy σ of player 1, and 0 < δ < δ0, we have

ε+ Ez
σδ,τ

g
δ
(w) ≥ v(z) ≥ −ε+ Ez

σ,τδ
ḡδ(w).

We say that v ∈ RS is an asymptotic w-uniform value of the family
(Γδ)δ>0 if for every ε > 0 there are strategies σδ of player 1 and τδ of player
2, such that for all strategies τ ∗δ of player 2, strategies σ∗δ of player 1, and
nonstationary discounting measures wδ on N that converge (as δ → 0+) to
w, we have

ε+ lim inf
δ→0+

Ez
σδ,τ

∗
δ
gδ(wδ) ≥ v(z) ≥ −ε+ lim sup

δ→0+
Ez
σ∗δ ,τδ

gδ(wδ).

Similarly, we say that v ∈ RN×S is an asymptotic −→w -limiting-average
equilibrium payoff of the family (Γδ)δ>0 if for every ε > 0 there are strategy
profiles σδ (δ > 0) and a duration δ0 > 0, such that for every player i, strategy
τ iδ of player i, and 0 < δ < δ0, we have

ε+ Ez
σδ
gi
δ
(wi) ≥ vi(z) ≥ −ε+ Ez

σ−iδ ,τ iδ
ḡiδ(w

i).

We say that v ∈ RN×S is an asymptotic −→w -uniform equilibrium payoff
of the family (Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ, such
that for every player i, all strategies τ iδ of player i, and all nonstationary
discounting measures wiδ on N that converge (as δ → 0+) to wi, we have

ε+ lim inf
δ→0+

Ez
σδ
giδ(w

i
δ) ≥ vi(z) ≥ −ε+ lim sup

δ→0+
Ez
σ−iδ ,τ iδ

giδ(w
i
δ).

Note that v is an asymptotic limiting-average, respectively asymptotic
uniform, equilibrium payoff of a family (Γδ)δ>0 if and only if it is an asymp-
totic 1∞-limiting-average, respectively asymptotic 1∞-uniform, equilibrium
payoff of this family. Therefore the results in the paragraph below generalize
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our results about the existence of an asymptotic limiting-average, respec-
tively asymptotic uniform, equilibrium payoff.

A strongly convergent family (Γδ)δ>0 has an asymptotic−→w -limiting-average
equilibrium payoff, and an exact family (Γδ)δ>0 has an asymptotic −→w -uniform
equilibrium payoff.

In what follows we define the asymptotic w-robust value and the asymp-
totic −→w -robust equilibrium payoff.

We say that v ∈ RS is an asymptotic w-robust value of the family (Γδ)δ>0

(of two-person zero-sum games) if for every ε > 0 there are strategies σδ of
player 1 and τδ of player 2, such that for all strategies τ ∗δ of player 2, strategies
σ∗δ of player 1, and nonstationary discounting measures wδ on N∪ {∞} that
converge (as δ → 0+) to w, we have

ε+ lim inf
δ→0+

Ez
σ1
δ ,τ

2
δ
gi
δ
(wδ) ≥ vi(z) ≥ −ε+ lim sup

δ→0+
Ez
τ1δ ,σ

2
δ ,
ḡiδ(wδ).

We say that v ∈ RN×S is an asymptotic −→w -robust equilibrium payoff of the
family (Γδ)δ>0 if for every ε > 0 there are strategy profiles σδ, such that for
every player i, all strategies τ iδ of player i, and all nonstationary discounting
measures wδ on N ∪ {∞} that converge (as δ → 0+) to w, we have

ε+ lim inf
δ→0+

Ez
σδ
gi
δ
(wiδ) ≥ vi(z) ≥ −ε+ lim sup

δ→0+
Ez
σ−iδ ,τ iδ

ḡiδ(w
i
δ).

An asymptotic −→w -robust equilibrium payoff of a family (Γδ)δ>0 is (by def-
inition) an asymptotic w-limiting-average equilibrium payoff and an asymp-
totic −→w -uniform equilibrium payoff.

Theorem 13 asserts that for every nonstationary discounting N -vector
measure −→w on [0,∞], an exact family (Γδ)δ>0 of N -person games has an
asymptotic −→w -robust equilibrium payoff.

2.7 The variable short-stage duration games

The paper states and proves asymptotic results on families (Γδ)δ>0 of discrete-
time stochastic games. In each game Γδ the stage duration is a constant
positive number δ > 0. The results remain intact also in the case where
the parameter δ is a sequence of stage durations δ = (δm)m≥0 with dn :=∑

0≤m<n δm →n→∞ ∞, where δm is the duration of the m-th stage, the m-th
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stage payoff function is gδ,m (or gm for short), and the m-th stage transition
function is pδ,m (or pm for short).4

The condition that the constant stage duration is sufficiently small needs
to be replaced with the condition that the supremum of the stage durations,
d(δ) := supm≥0 δm, is sufficiently small. A family (Γδ)δ with variable stage
duration converges in data if supm≥0 ‖gm/δm − g‖ and supm≥0 ‖pm/δm − µ‖
converge to zero as d(δ) goes to zero. It is an exact sequence if gm = δmg
and pm = δmµ, and it converges strongly if it converges in data and for every
δ, m ≥ 0, z′ 6= z, and a ∈ A(z), pm(z′, z, a) 6= 0 iff µ(z′, z, a) 6= 0.

The ρ-discounted present value of the payoff gm at stagem is gm
∏

0≤j<m(1−
δjρ) (where a product over an empty set of indices is zero). Therefore, in
the ρ-discounted game Γδ, the valuation of a play (z0, a0, . . . , zm, am . . .) by
player i is

∑∞
m=0 gm(zm, am)

∏
0≤j<m(1− δjρ).

In the case of a time-separable valuation, wδ is said to be nonstationary
discounting if wδ(m)

δm
is nonincreasing in m. We assign to the measure wδ

on N the measure w′δ on [0,∞) that is supported on {dn : n ∈ N} and
w′δ(dn) = wδ(n). We say that wδ converges, as d(δ)→ 0+, to the measure w
on [0,∞) if w′δ converges w∗ to w.

Similarly, in the limiting-average games with variable stage duration δ,
we set g(s) = 1

s

∑
0≤m:dm<s

gm(zm, am) and in the definitions of gi
δ

and ḡiδ, the
condition wδ(m) < η needs to be replaced with wδ(m) < ηδm.

3 Convergence of stochastic games with short-

stage duration

We study the “convergence” of the family (Γδ)δ>0, and the presentation of
the “limit” as a continuous-time stochastic game Γ.

We define various conditions of the dependence of the transition rates
pδ on the stage duration δ. Some of these conditions relate directly to as-
sumptions on the homogeneous Markov chain of states that are defined by an
initial state, a stationary strategy, and the stage duration δ. Each one of the
conditions can be interpreted as a consistency, or approximate consistency,
of the models Γδ as δ varies.

Condition (p.0) asserts that the probability of a state change within the

4Moreover, the stage-dependent duration δm, payoff gm, and transition function pm
can depend on past history.
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first m stages (namely, in a time t ≤ mδ) converges to zero as mδ goes to zero.
In particular, the probability of a state change in a single stage converges to
zero as δ goes to zero. Condition (p.0) is equivalent to mpδ(z, z, a) converging
to zero as mδ goes to zero. Recall that condition (p.2) is limδ→0+ pδ/δ = µ
where µ : S ×A → R, and note that condition (p.2) implies condition (p.0).

Recall that condition (p.3) requires (p.2) and that pδ(z
′, z, a) > 0 if and

only if µ(z′, z, a) > 0 (where µ(z′, z, a) is the limit, as δ goes to zero, of
pδ(z

′, z, a)/δ). Condition (p.3) implies that the ergodic classes of the ho-
mogeneous Markov chain that is defined by a stationary strategy and the
transition rates pδ are independent of δ.

Recall that condition (p.1) is pδ = δµ, condition (p.1) implies condition
(p.3), and condition (p.3) implies condition (p.2). Therefore, each asymptotic
property that holds in any family (Γδ)δ>0 that obeys (g.2) and (p.k) holds
also in any family (Γδ)δ>0 that obeys (g.1) and (p.k′), where k′ = 3 if k = 2
and k′ = 1 if k = 3.

Recall the following definitions of convergence in data and strong conver-
gence.

Definition 1 (Convergence in data) We say that Γδ converges in data
(as δ → 0) if the family (Γδ)δ>0 satisfies conditions (g.2) and (p.2).

Definition 2 (Strong convergence) We say that Γδ converges strongly
(as δ → 0) if the family (Γδ)δ>0 satisfies conditions (g.2) and (p.3).

Next, we wish to define the “convergence” of the family (Γδ)δ>0 as a
convergence (as δ → 0+) of the stochastic process of states and payoffs that
is defined by the initial state and a strategy σ. Obviously, in defining the
convergence of the stochastic process of states and payoffs one has to take
into account the stage duration δ. The state zn in the play of the discrete-
time stochastic game Γδ is interpreted as the state at time nδ. Similarly, the
sum

∑n−1
j=0 gδ(zj, aj) of stage payoffs in stages 0 ≤ j < n is interpreted as the

cumulative payoff in the time interval [0, nδ].

Definition 3 (Convergence in stationary dynamics) We say that Γδ con-
verges in stationary dynamics if for all pure stationary strategies σ, states
z′, z ∈ S, times t ≥ 0, and positive integers nδ such that nδδ −→

δ→0+
t, we have

P z
δ,σ(znδ = z′) −→

δ→0+
F σ
z,z′(t)
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and

Ez
δ,σ

nδ∑
j=0

gδ(zj, aj) −→
δ→0+

Gt(z, σ),

where (σ, z′, z, t) 7→ F σ
z,z′(t) ∈ R and (t, z, σ) 7→ Gt(z, σ) ∈ RN are functions

that are defined for all pure stationary strategies σ, states z′, z ∈ S, and times
t ≥ 0.

3.1 Stationary convergence

Proposition 1 The following conditions are equivalent:
(A) (Γδ)δ>0 converges in stationary dynamics.
(B) (Γδ)δ>0 converges in data.

Proof. (A) =⇒ (B). Assume condition (A) holds. Obviously,
∑

z′∈S P
z
δ,σ(znδ =

z′) = 1. Therefore,
∑

z′∈S F
σ
z,z′(t) = 1. Applying condition (A) to nδ = 0

and z′ = z, we have F σ
z,z(0) = 1. Applying condition (A) to t = 0 and all

nonnegative integers nδ with δnδ −→
δ→0+

0, we deduce that for every ε > 0

there are tε > 0 and δε > 0, such that for every 0 < δ < δε and n with
nδ ≤ tε, we have P z

δ,σ(zn = z) > 1−ε for all states z ∈ S and pure stationary
strategy profiles σ.

Fix z ∈ S and a ∈ A(z), set Kδ = Kδ(z) =
∑

z′ 6=z pδ(z
′, z, a), and let σ

be a pure stationary strategy with σ(z) = a, and n = nδ = [t1/3/δ] (where
[∗] denotes the largest integer that is less than or equal to ∗). Then, for
δ < δ1/3, 1/3 > P z

δ,σ(zn 6= z) ≥
∑n

m=1 P
z
δ,σ(∀j < m zj = z and z 6= zm =

zn) ≥
∑n

m=1(1 − Kδ)
m−1Kδ2/3 = (1 − (1 − Kδ)

n)2/3, which implies the
inequality (1 − Kδ)

n ≥ 1/2. Therefore, lim supδ→0+ Kδ/δ < ∞. Therefore,
there is a positive constant K such that for all δ > 0, z ∈ S, and a ∈ A(z),
we have

∑
z′ 6=z pδ(z

′, z, a) < Kδ.
Next, we prove that if for a pair of distinct states z′ 6= z and an action

profile a ∈ A(z) we have lim infδ→0+ pδ(z
′, z, a)/δ < c, then, for t > 0 suffi-

ciently small and a stationary strategy σ with σ(z) = a, we have F σ
z,z′(t) < ct.

Indeed, the set {zn = z′, z0 = z} is the union of the disjoint sets Ym,z′′ =
{∀0 ≤ j < m, zj = z0, zm = z′′ and zn = z′}, where m ranges over the
positive integers 1 ≤ m ≤ n and z′′ ranges over all states z′′ 6= z. Let ε > 0
and set n = nδ = [tε/δ]. Note that P z

δ,σ(Ym,z′′) ≤ pδ(z
′, z, a) for z′′ = z′

and
∑n−1

m=1

∑
z 6=z′′ 6=z′ P

z
δ,σ(Ym,z′′) ≤ εKδn for δ sufficiently small. Therefore,

if δ > 0 is sufficiently small so that, in addition, pδ(z
′, z, a)/δ < c and for
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all z′′ 6= z and a ∈ A(z) we have pδ(z
′′, z, a) ≤ Kδ, then P z

δ,σ(zn = z′) ≤∑n
m=1 P

z
δ,σ(Ym,z′) + εKδn ≤ (c + Kε)δn. Therefore for t > 0 sufficiently

small we have F σ
z,z′(t) < ct.

Finally, we prove that if for a pair of distinct states z′ 6= z and an
action profile a ∈ A(z) we have lim supδ→0+ pδ(z

′, z, a)/δ > c, then, for
t > 0 sufficiently small and a stationary strategy σ with σ(z) = a, we have
F σ
z,z′(t) > ct. Indeed, the set {zn = z′, z0 = z} contains the disjoint sets
Ym,z′ = {∀0 ≤ j < m, zj = z0, zm = z′ = zn}, where m ranges over
the positive integers 1 < m ≤ n. Let ε > 0 and set n = nδ = [tε/δ].
Note that P z

δ,σ(Ym,z′) ≥ (1 − ε)2pδ(z
′, z, a) for δ sufficiently small. There-

fore, if δ > 0 is sufficiently small so that, in addition, pδ(z
′, z, a)/δ > c,

then P z
δ,σ(zn = z′) ≥

∑n
m=1 P

z
δ,σ(Ym,z′) ≥ n(1 − ε)2δc. Therefore for t > 0

sufficiently small we have F σ
z,z′(t) > ct.

We conclude that the lim supδ→0+ pδ(z
′, z, a)/δ and the lim infδ→0+ pδ(z

′, z, a)/δ
coincide.

We will now prove that the second part of (B) holds. Fix a player i ∈ N
and assume that lim supδ→0+ ‖giδ‖/δ < ∞, where ‖giδ‖ := maxz,a |giδ(z, a)|.
For t > 0 let γt(z, σ) = 1

t
Gt(z, σ). Then, for δ > 0 sufficiently small,

giδ(z, σ(z))/δ − 2ε‖giδ‖/δ ≤ γitε(z, σ) + ε. Therefore

lim sup
δ→0+

giδ(z, σ(z))/δ ≤ γitε(z, σ) + ε+ 2ε lim sup
δ→0+

‖giδ‖/δ,

and therefore
lim sup
δ→0+

giδ(z, σ(z))/δ ≤ lim inf
ε→0+

γitε(z, σ).

Similarly, for δ > 0 sufficiently small, γitε(z, σ)−ε ≤ giδ(z, σ(z))/δ+2ε‖giδ‖/δ,
and therefore lim supε→0+ γ

z
tε(z, σ) ≤ lim infδ→0+ g

i
δ(z, σ(z))/δ. Given a ∈

A(z) and applying these inequalities to a stationary strategy σ with σ(z) =
a we conclude that the lim infδ→0+ g

i
δ(z, a)/δ and the lim supε→0+ g

i
δ(z, a)/δ

coincide.
It remains to prove that condition (A) implies that lim supδ→0+ ‖giδ‖/δ <

∞. For every 1 > δ > 0 let zδ ∈ S and aδ ∈ A(z) be such that |giδ(zδ, aδ)| =
‖giδ‖. Let ε > 0, and let σ = σδ be a stationary strategy with σ(zδ) = aδ.
Set n = nδ = [tε/δ] and z0 = zδ. If giδ(zδ, aδ) ≥ 0, then, for sufficiently small
δ > 0, we have Gi

tε(zδ, σ) + tε/3 ≥ Ezδ
σ

∑n−1
j=0 g

i
δ(zj, aj) ≥ (1− 2ε)ngiδ(zδ, aδ).

Therefore, if ε < 1/3 we have giδ(zδ, aδ)/δ ≤ 3|γitε(z, σ)| + 1 for δ > 0
sufficiently small. If gi(zδ, aδ) < 0, then, for sufficiently small δ > 0, we
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have Gi
tε(zδ, σ) − tε/3 ≤ Ezδ

σ

∑n−1
j=0 g

i
δ(zj, aj) ≤ (1 − 2ε)ngiδ(zδ, aδ). There-

fore, if ε < 1/3 we have giδ(zδ, aδ)/δ ≥ −3|γitε(z, σ)| − 1. This proves that
lim supδ→0+ ‖giδ‖/δ ≤ 3|γitε(z, σ)|+ 1 <∞.

(B) =⇒ (A). Let σ be a stationary strategy and let Q be the S×S matrix
whose (z, z′)-th entry is Qz,z′ = µ(z′, z, σ(z)). Note that for δ > 0 sufficiently
small, I + δQ is a transition matrix, where I stands for the identity matrix,
and ‖I + δQ‖ := maxz∈S

∑
z′∈S |(I + δQ)z,z′| = 1. In addition, eδQ (which

equals by definition the convergent sum
∑∞

j=0
δjQj

j!
) is an S × S matrix, and

(eδQ)n = enδQ. Let Pδ be the S × S transition matrix whose (z, z′)-th entry
is (Pδ)z,z′ = Iz,z′ + pδ(z

′, z, σ(z)). Therefore, if n is a positive integer, then
P z
δ,σ(zn = z′) = (P n

δ )z,z′ . By the assumption on pδ and the definitions of Q

and eδQ, we have ‖eδQ − Pδ‖ ≤ o(δ) as δ → 0+.
For any two S × S matrices (or elements of a norm algebra) A and B we

have An −Bn =
∑n

k=1A
n−k(A−B)Bk−1, implying that ‖An −Bn‖ ≤ ‖A−

B‖
∑n−1

j=0 ‖A‖j‖B‖n−j. Therefore, ‖P n
δ − enδQ‖ ≤ ‖Pδ − eδQ‖

∑n−1
j=0 ‖eδQ‖j ≤

o(δ)n as δ → 0+.
Therefore, ‖P n

δ − etQ‖ ≤ ‖P n
δ − enδQ‖ + ‖etQ − enδQ‖ → 0 as δ → 0+

and nδ → t. We conclude that P z
δ,σ(zn = z′) → F σ

z,z′(t) = (etQ)z,z′ ∈ R as
δ → 0+.

By assumption (B) we have gδ(z, a) = δg(z, a) + o(δ). Therefore, if δ →
0+ and nδδ → t > 0, then |Ez

δ,σ

∑nδ−1
j=0 giδ(zj, aj)−Ez

δ,σ

∑nδ−1
j=0 δgi(zj, aj)| → 0.

If δ → 0+ and nδδ → t > 0, then, as shown earlier, P z
δ,σ(zn = z′)→ F σ

z,z′(t),

and, therefore, Ez
δ,σ

∑nδ−1
j=0 δgi(zj, aj)→ Gt(z, σ) =

∫ t
0

∑
z′∈S F

σ
z,z′(s)g(z′, σ(z′)) ds.

Therefore, Ez
δ,σ

∑nδ−1
j=0 giδ(zj, aj)→ Gt(z, σ) as δ → 0+ and nδδ → t > 0. �

Remark 2 The above proof of condition (B) implying condition (A) proves
that for every stationary strategy σ, every time t ≥ 0, all states z, z′ ∈ S, and
all integers 0 ≤ nδ with nδδ →δ→0+ t, P z

σ (znδ = z′) →δ→0+ F σ
z,z′(t) = etQz,z′

where Q is the S × S matrix whose (z, z′)-th entry is Qz,z′ = µ(z′, z, σ(z)).

Note that every continuous-time stochastic game Γ = 〈N,S,A, µ, g〉 is a
“data limit” of the family of discrete-time stochastic games Γδ = 〈N,S,A, pδ, gδ〉,
where gδ(z, a) = δg(z, a) and pδ(z

′, z, a) = δµ(z′, z, a) for all pairs of distinct
states z′ 6= z and every action profile a ∈ A(z).
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3.2 Markov convergence

The next proposition gives a sufficient condition for a family of Markov strate-
gies σδ in Γδ to have a continuous-time limiting dynamics and payoffs as
δ → 0+. In the formulas that follow, we view σδ(z, j) (j ∈ N) as a measure
on A(z); i.e., σδ(z, j) ∈ ∆(A(z)), and σδ(j) := (σδ(z, j))z∈S is an element
of ×z∈S∆(A(z)). Therefore, for any fixed z ∈ S, any linear combination of
σδ(z, j) is a measure on A(z). Similarly, if σ : S × R+ → ∆(A) is measur-
able with σ(z, t) ∈ ∆(A(z)), then, for any function f ∈ L1(R+), the integral∫∞

0
f(t)σ(z, t) dt is well defined.
We say that the Markov strategies σδ in Γδ converge w* if for every contin-

uous function f : R+ → R with bounded support, the limit of
∑∞

j=0 f(jδ)δσδ(z, j)
as δ → 0+ exists. In that case, there is a measurable function σ : S ×R+ →
∆(A) (with σ(z, t) ∈ ∆(A(z))) such that for every f ∈ L1(R+) the limit
of
∫∞

0
f(t)σδ(z, [t/δ]) dt as δ → 0+ exists and equals

∫∞
0
f(t)σ(z, t) dt, and

we say that the discrete-time Markov strategies σδ converge w* to (the
continuous-time Markov correlated strategy) σ : S × R+ ∈ ∆(A).

Whenever the conditional probability P z0
δ,σ(E1 | E2) is independent of the

initial state z0, we suppress the superscript of the initial state z0.

Proposition 2 If the (correlated) Markov strategies σδ in Γδ converge w* to
σ : S ×R+ → ∆(A) and the family of discrete-time stochastic games (Γδ)δ>0

converges in data, then, for every 0 ≤ s < t, there are S × S transition
matrices F σ(s, t) such that

Pσδ(zn = z′ | zk = z)→ F σ
z,z′(s, t) as δ → 0+, kδ → s, and nδ → t,

and

Ez
σδ

∑
0≤m<n

gδ(zm, am)→
∫ t

0

∑
z′∈S

F σ
z,z′(0, t)g(z′, σ(z′, t)) dt as δ → 0+ and nδ → t.

Proof. As the family of discrete-time stochastic games (Γδ)δ>0 converges in
data, there is a positive constant K > 0 such that for every (z, a) ∈ A we
have |pδ(z, z, a)| > 1 − Kδ. Therefore, if 0 ≤ k < n, |Pδ,σδ(zn = z′ | zk =
z) − Iz,z′| < 1 − (1 − Kδ)n−k → 0 as nδ − kδ → 0+. Therefore, it suffices
to prove that for every s < t there are sequences kδ < nδ such that kδδ → s
and nδδ → t such that

Pδ,σδ(znδ = z′ | zkδ = z)→ F σ
z,z′(s, t) as δ → 0 + .
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We will prove it for nδ = [t/δ] and kδ = [s/δ].
Assume that the Markov strategies σδ in Γδ converge w* to σ : S ×

R+ → ∆(A). Let M be the space of all S × S matrices Q, let M0 be
the subset of all its matrices Q with

∑
z′∈S Qz,z′ = 0 for every z ∈ S and

Qz,z′ ≥ 0 for all z 6= z′, and let M1 be the subset of M of all transition
matrices. The space M is a (noncommutative) Banach algebra with the
norm ‖Q‖ = maxz∈S

∑
z′∈S |Qz,z′|, and M1 is closed under multiplication.

For an ordered list F1, . . . , Fj ∈M we denote by
∏j

i=1 Fi the matrix (ordered)
product F1F2 . . . Fj.

Let Q : [0,∞) → M be defined by Qz,z′(u) = µ(z′, z, σ(z, u)), and let
Qδ : [0,∞)→M be defined by Qδ

z,z′(u) = pδ(z
′, z, σδ(z, [u/δ]))/δ. As (Γδ)δ>0

converges in data, Qδ
z,z′(u) = µ(z′, z, σδ(z, [u/δ])) + o(1) as δ → 0+. There-

fore,
∫ t
s
Qδ
z,z′(u) du = µ(z′, z,

∫ t
s
σδ(z, [u/δ])) du+ o(1) as δ → 0+, where for a

measure α on A(z) we define µ(z′, z, α) :=
∑

a∈A(z) α(a)µ(z′, z, a). Therefore,

as the Markov strategies σδ converge w* to σ, for every s < t we have∫ t

s

Qδ(u) du −→
δ→0+

∫ t

s

Q(u) du.

Let Gδ
j be the transition matrix (Gδ

j)z,z′ = pδ(z
′, z, σδ(z, j)) + Iz,z′ , and

given 0 ≤ s ≤ t we define Gδ(s, t) to be the transition matrix
∏[t/δ]−1

j=[s/δ] G
δ
j ,

where a product over an empty set of indices is defined as the identity. It
suffices to prove that Gδ(s, t) converges as δ → 0+.

Let C = 2 maxz,a |µ(z, z, a)| < C ′. It follows that for every t ≥ 0 we have
‖Q(t)‖ ≤ C, and for sufficiently small δ > 0 we have ‖Qδ(t)‖ < C ′. Let
Lδ(s, t) = [t/δ]− [s/δ], and note that δLδ(s, t) ≤ t− s+ δ.

As M is a Banach algebra, for every finite sequence Q1, . . . , Qm of ele-
ments in M , we have

‖
m∏
j=1

(I +Qj)− I −
m∑
j=1

Qj‖ ≤ e
∑m
j=1 ‖Qj‖ − 1−

m∑
j=1

‖Qj‖. (1)

Inequality (1) follows from the inequality ex ≥ 1 + x, the triangle inequality,
and the Banach algebra inequality ‖QQ′‖ ≤ ‖Q‖‖Q′‖. Indeed, if θj = ‖Qj‖,
then ‖

∏m
j=1(I+Qj)−I−

∑m
j=1 Qj‖ ≤

∏
j∈J(1+θj)−1−

∑m
j=1 θj ≤ e

∑m
j=1 θj−

1−
∑m

j=1 θj.

As Gδ
j = I +

∫ jδ+δ
jδ

Qδ(u) du,
∫ jδ+δ
jδ
‖Qδ(u)‖ du ≤ δC ′, and ex − 1 − x is
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monotonic increasing on x ≥ 0, for all 0 ≤ s < t, we have

‖Gδ(s, t)− I −
∫ t

s

Qδ(u) du‖ ≤ ‖Gδ(s, t)− I −
∫ δ[t/δ]

δ[s/δ]

Qδ(u) du‖+ 2δC ′

≤ eC
′δLδ(s,t) − 1− Lδ(s, t)C ′δ + 2δC ′

≤ e(t−s+δ)C′ − 1− (t− s+ δ)C ′ + 2δC ′

< (t− s)2C ′2

for (t− s)C ′ ≤ 1 and δ > 0 sufficiently small.
For every sequence s = t0 < t1 < . . . < tk = t, set Aj = Gδ(tj−1, tj),

Bδ
j = I +

∫ tj
tj−1

Qδ(u) du, and Bj = I +
∫ tj
tj−1

Q(u) du, j = 1, . . . , k. Note

that Gδ(t0, t) =
∏k

j=1 Aj and
∏k

j=1Aj −
∏k

j=1Bj =
∑k

i=1

∏i−1
j=1Aj(Ai −

Bi)
∏k

j=i+1Bj. For 1 ≤ j < k, ‖Aj‖ = 1, and for sufficiently small maxki=1(ti−
ti−1), ‖Bi‖ = 1 for every 1 ≤ i ≤ k. Therefore ‖

∏k
j=1Aj −

∏k
j=1Bj‖ ≤∑k

j=1 ‖Aj−Bj‖ ≤
∑k

j=1 ‖Aj−Bδ
j‖+

∑k
j=1 ‖Bδ

j −Bj‖. Therefore, for a suffi-

ciently large k, by setting tj = s+j(t−s)/k and F (tj−1, tj) = I+
∫ tj
tj−1

Q(u) du,

there is a (sufficiently small) δ(k) > 0 such that for 0 < δ < δ(k), we have

‖Gδ(s, t)−
k∏
j=1

F (tj−1, tj)‖ ≤ 2(t− s)2C ′2/k.

Therefore, sup0<δ,δ′<δ(k) ‖Gδ(s, t) − Gδ′(s, t)‖ ≤ 4(t − s)2C ′2/k, implying

that limk→∞ sup0<δ,δ′<δ(k) ‖Gδ(s, t) − Gδ′(s, t)‖ = 0. Therefore, Gδ(s, t) con-
verges to a limit as δ → 0+. �

Remark 3 The result applies in particular to profiles σδ = (σiδ)i∈N of (un-
correlated) Markov strategies in Γδ that converge w∗ to (a continuous-time
correlated Markov strategy) σ : S × R+ → ∆(A). In this case the w∗ limit σ
need not represent a profile of continuous-time Markov strategies.

For example, if σ1
δ and σ2

δ play (T, L) at even stages and (B,R) at odd
stages, then the Markov strategy profiles σδ = (σ1

δ , σ
2
δ ) converge w∗ to (the

continuous-time stationary correlated strategy) σ with σ(∗)(T, L) = 1/2 =
σ(∗)(B,R). Therefore, asymptotic results that involve referral to Markov
strategies need special attention. They are not obtained by simply “taking
limits.” However, if σ : S × R+ → ∆(A) is a continuous-time correlated
Markov strategy, there are profiles of pure (and thus uncorrelated) Markov
strategies σδ = (σiδ)i∈N such that σδ converge w∗ to σ.
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Remark 4 Proposition 2 holds also in the model of variable stage duration
games. The conditions δ → 0+, kδ → s, and nδ → t, are replaced with
d(δ) → 0+, dk → s, and dn → t respectively, and the term gδ(zm, am) is
replaced with gm(zm, am).

The proof of Remark 4 is obtained by the following (additional) notational
modifications in the proof of Proposition 2. The inequality pδ(z, z, a) >
1 − Kδ is replaced with pm(z, z, a) > 1 − Kδm for every m ≥ 0, the term
(1 − Kδ)n−k is replaced with

∏
k≤m<n(1 − Kδm), and a term of the form

[t/δ] is replaced with the largest integer m such that dm ≤ t. The definition
(in the proof of Proposition 2) of the S × S matrix Qδ

z,z′(u) is modified to

Qδ
z,z′(u) = p[u/δ](z

′, z, σδ(z, [u/δ]))/δ[u/δ]. The inequality 0 < δ < δ(k) is
interpreted as 0 < d(δ) < δ(k).

4 Two-person zero-sum stochastic games with

short-stage duration

4.1 The discounted case

Fix the sets of player N = {1, 2}, states S, and actions A, and let Γδ =
〈N,S,A, gδ, pδ〉, or Γδ = 〈gδ, pδ〉 for short, be a stochastic game whose stage
payoff function gδ and transitions pδ depend on the parameter δ that repre-
sents the single-stage duration. Recall that Γδ,ρ denotes the (unnormalized)
discounted game Γδ with discount factor 1 − ρδ, Vδ,ρ denotes its value, and
Vρ ∈ RS is the asymptotic ρ-discounted value of (Γδ)δ>0 if Vδ,ρ →δ→0+ Vρ.

Given a family (Γδ)δ>0 that has an asymptotic ρ-discounted value Vρ, we
say that the stationary strategy σ, respectively τ , is asymptotic ρ-discounted
optimal if for every ε > 0, there is δ0 > 0, such that for every 0 < δ < δ0,
strategy σ∗ of player 1 (in Γδ), strategy τ ∗ of player 2 (in Γδ), and state z,

ε+Ez
δ,σ,τ∗

∞∑
m=0

(1−ρδ)mgδ(zm, xm) ≥ Vρ(z) ≥ −ε+Ez
δ,σ∗,τ

∞∑
m=0

(1−ρδ)mgδ(zm, xm).

Given a converging family (Γδ)δ>0, we denote by g and µ the limits, as
δ → 0+, of gδ/δ and pδ/δ respectively.

We denote by X i(z), respectively X(z), all probability distributions over
Ai(z), respectively over A(z) (= A1(z) × A2(z)). For z ∈ S and xi ∈ X i(z)
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we denote by x1 ⊗ x2 the product distribution x ∈ X(z) that is given by
x(a) = x1(a1)x2(a2) for a = (a1, a2) ∈ A1(z) × A2(z). For any function
h : a 7→ h(a), that is defined over A(z), e.g., A(z) 3 a 7→ g(z, a) or A(z) 3
a 7→ µ(z′, z, a), we denote also by h its linear extension to X(z), i.e., h(x) =∑

a∈A(z) x(a)h(a).

Theorem 1 Every converging family (Γδ)δ>0 has an asymptotic ρ-discounted
value, which equals the unique solution V ∈ RS of the system of S equations,
z ∈ S,

ρv(z) = max
x1∈X1(z)

min
x2∈X2(z)

(
g(z, x1 ⊗ x2) +

∑
z′∈S

µ(z′, z, x1 ⊗ x2)v(z′)

)
, (2)

and each player has an asymptotic ρ-discounted optimal stationary strategy.

Proof. By the theory of discrete-time stochastic games, Vδ,ρ exists and is the
unique solution of the system of equations

v(z) = max
x1∈X1(z)

min
x2∈X2(z)

(
gδ(z, x

1 ⊗ x2) +
∑
z′∈S

(1− ρδ)Pδ(z′ | z, x1 ⊗ x2)v(z′)

)
.

(3)
Since Pδ(z

′ | z, a) = pδ(z
′, z, a) for z′ 6= z, and Pδ(z

′ | z, a) = 1 + pδ(z
′, z, a)

for z′ = z, we can deduce, by subtracting (1 − ρδ)v(z) from both sides of
the z equation, that Vδ,ρ exists and is the unique solution of the system of
equations

ρδv(z) = max
x1∈X1(z)

min
x2∈X2(z)

(
gδ(z, x

1 ⊗ x2) +
∑
z′∈S

(1− ρδ)pδ(z′, z, x1 ⊗ x2)v(z′)

)
.

(4)
For gδ = δg and pδ = δ

1−ρδµ, v solves (4) if and only if it solves (2). For

δ > 0 sufficiently small, pδ = δ
1−ρδµ indeed represents transition probabilities.

Therefore the system (2) of equations has a unique solution.
Let V be the unique solution of (2). Let σ be a stationary strategy of

player 1 with σ(z) maximizing (over all x1 ∈ X1(z))

min
x2∈X2(z)

g(z, x1 ⊗ x2) +
∑
z′∈S

µ(z′, z, x1 ⊗ x2)V (z′). (5)
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Therefore, for every z ∈ S and x2 ∈ X2(z) we have

g(z, σ(z)⊗ x2) +
∑
z′∈S

µ(z′, z, σ(z)⊗ x2)V (z′) ≥ ρV (z). (6)

Fix ε > 0. We claim that there is δ0 > 0, such that for every 0 < δ < δ0,
strategy τ of player 2, and state z,

Ez
δ,σ,τ

∞∑
m=0

(1− ρδ)mgδ(zm, am) ≥ V (z)− ε. (7)

Fix an initial history hm = (z0, a0, . . . , zm), and let x2
m = τ(hm) and xm =

σ(zm)⊗ x2
m. Let Ym := Eσ,τ (gδ(zm, am) + (1− ρδ)V (zm+1) | hm).

Ym = gδ(zm, xm) + (1− ρδ)
∑
z′∈S

Pδ(z
′ | zm, xm)V (z′)

≥ δg(zm, xm) +
∑
z′∈S

δµ(z′, zm, xm)V (z′)− ρδV (zm) + V (zm)− o(δ)

≥ V (zm)− o(δ).

Therefore, for everym ≥ 0, Ez
δ,σ,τ (1−ρδ)mgδ(zm, am) ≥ (1−ρδ)mEz

δ,σ,τV (zm)−
(1 − ρδ)m+1Ez

δ,σ,τV (zm+1) − o(δ)(1 − ρδ)m. Summing over m = 0, 1, . . ., we
deduce that

Ez
δ,σ,τ

∞∑
m=0

(1− ρδ)mgδ(zm, am) ≥ V (z)− o(δ)
∞∑
m=0

(1− ρδ)m →δ→0+ V (z).

By duality, if τ is a stationary strategy of player 2 with τ(z) minimizing
(over all x2 ∈ X2(z))

max
x1∈X1(z)

g(z, x1 ⊗ x2) +
∑
z′∈S

µ(z′, z, x1 ⊗ x2)V (z′), (8)

then for every strategy σ of player 1 we have

Ez
δ,σ,τ

∞∑
m=0

(1− ρδ)mgδ(zm, am) ≤ V (z) + o(δ)
∞∑
m=0

(1− ρδ)m →δ→0+ V (z).

�
Denote by Vρ(g, µ) the asymptotic ρ-discounted value of the family (Γδ =

〈gδ, µδ〉)δ>0 that converges (as δ goes to zero) to 〈g, µ〉, and by Vδ,ρ(g, p) the
value of the discounted discrete-time stochastic game 〈g, p〉 with a discount
factor 1− ρδ.
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Remark 5 The above proof of Theorem 1 shows that

Vρ(g, µ) = Vδ,ρ(δg,
δ

1− ρδ
µ) whenever δ ≤ 1

‖µ‖+ ρ
, (9)

where ‖µ‖ = maxz,a |µ(z, z, a)|.

Remark 6 The proof shows in addition that a stationary strategy σ of player
1, respectively τ of player 2, is asymptotic ρ-discounted optimal if and only
if, for every state z ∈ S, σ(z) maximizes (5), respectively, τ(z) minimizes
(8).

Remark 7 It is worth recalling that a stationary strategy is a (behavioral)
strategy whose mixed action at every stage is independent of the stage, past
states, and past actions of the players. Therefore, the result holds also in a
model where some of the players do not observe past actions, and even in a
model where some of the players are unable to recall the current stage and
past states.

Remark 8 The proof that (2) has a solution was based on the corresponding
result from the theory of discounted discrete-time stochastic games. In what
follows we prove it directly.

For a vector v ∈ RS we denote by ‖v‖ its maximum norm ‖v‖ := maxz∈S |v(z)|.
For every z ∈ S, a ∈ A(z), v ∈ RS, and x ∈ X(z), Gz[v](a) is defined by

Gz[v](a) =
1

‖µ‖+ ρ

(
g(z, a) +

∑
z′∈S

µ(z′, z, a)v(z′) + ‖µ‖v(z)

)
,

and (thus) Gz[v](x) is defined by

Gz[v](x) =
∑
a∈A(z)

x(a)Gz[v](a)

=
1

‖µ‖+ ρ

(
g(z, x) +

∑
z′∈S

µ(z′, z, x)v(z′) + ‖µ‖v(z)

)
.

Define the operator Q from RS to RS by

Qv(z) = max
x∈X1(z)

min
x2∈X2(z)

Gz[v](x1 ⊗ x2).
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By the minmax theorem we have

Qv(z) = min
x2∈X2(z)

max
x∈X1(z)

Gz[v](x1 ⊗ x2)

and therefore v is a solution of Qv = v if and only if it is a solution of
(2). Therefore, it suffices to prove that Q has a fixed point. Note that

Gz[v + c1S](x) = Gz[v](x) + c ‖µ‖
‖µ‖+ρ , and therefore

Q(v + c1S)(z) = Qv +
c ‖µ‖
‖µ‖+ ρ

.

In addition, Q is monotonic; i.e., u ≥ v implies that Qu ≥ Qv, and therefore
for v, u ∈ RS we have

‖Qv −Qu‖ ≤ ‖µ‖
‖µ‖+ ρ

‖v − u‖.

Therefore Q is a strict contraction and therefore Q has a unique fixed point.
�

Remark 9 The following (alternative) proof of Theorem 1 is based on re-
sults from the theory of continuous-time stochastic games in conjunction with
stationary convergence of the family of games Γδ.

We apply notations and inequalities from [8]. First, one recalls that a pair of
stationary strategies, σ of player 1 and τ of player 2, where σ(z) maximizes
(5), and τ(z) minimizes (8), is a pair of optimal strategies in the continuous-
time ρ-discounted game Γ = 〈g, µ〉, and V is its value. In particular, for
every stationary strategy τ ∗ of player 2 and every stationary strategy σ∗ of
player 1 we have

Ez
σ,τ∗

∫ ∞
0

e−ρtg(zt, σ(zt)⊗τ ∗(zt)) dt ≥ V (z) ≥ Ez
σ∗,τ

∫ ∞
0

e−ρtg(zt, σ
∗(zt)⊗τ(zt)) dt.

Next, stationary convergence implies that for stationary strategies σ′ of player
1 and τ ′ of player 2 we have

Ez
δ,σ′,τ ′

∞∑
m=0

(1− ρδ)mgδ(zm, am)→δ→0+ Ez
σ′,τ ′

∫ ∞
0

e−ρtg(zt, σ
′(zt)⊗ τ ′(zt)) dt.
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Therefore, given ε > 0, for δ > 0 sufficiently small, for every pure stationary
strategy τ ∗ of player 2 and pure stationary strategy σ∗ of player 1, we have

ε+Ez
δ,σ,τ∗

∞∑
m=0

(1−ρδ)mgδ(zm, am) ≥ V (z) ≥ −ε+Ez
δ,σ∗,τ

∞∑
m=0

(1−ρδ)mgδ(zm, am).

In a discrete-time discounted game (with finitely many states and actions)
there is always a pure stationary strategy that is a best reply to a given
stationary strategy. Therefore V is an asymptotic ρ-discounted value and
σ and τ are asymptotic ρ-discounted optimal strategies of the converging
family (Γδ)δ>0. �

The algebraic approach. Fix the finite state space S and the finite
action sets Ai(z) (i = 1, 2 and z ∈ S), and recall that A = {(z, a) : z ∈
S, a ∈ A(z)}. The set of all (g, µ, v, ρ, x1, x2), where g ∈ RA, µ ∈ RS×A (with
µ(z′, z, a) ≥ 0 for S 3 z′ 6= z ∈ S and a ∈ A(z), and

∑
z′∈S µ(z′, z, a) = 0 for

(z, a) ∈ A), v ∈ RS, 0 < ρ < 1, xi ∈ X i(z), that satisfies the following finite5

lists of inequalities,

ρv(z) ≤ min
y2∈X2(z)

(
g(z, x1 ⊗ y2) +

∑
z′∈S

µ(z′, z, x1 ⊗ y2)v(z′)

)
, (10)

ρv(z) ≥ max
y1∈X1(z)

(
g(z, y1 ⊗ x2) +

∑
z′∈S

µ(z′, z, y1 ⊗ x2)v(z′)

)
, (11)

is semialgebraic. Therefore, for each fixed (g, µ), the graph of the correspon-
dence assigning to each ρ the asymptotic ρ-discounted optimal stationary
strategies of each player and the asymptotic ρ-discounted value function Vρ
is semialgebraic. Therefore (see, e.g., [1, 6]), there is a semialgebraic map
ρ 7→ (Vρ, σ

ρ, τ ρ), where Vρ is the ρ-discounted asymptotic value and σρ and
τ ρ are stationary asymptotic ρ-discounted optimal strategies. In particu-
lar, the map has a convergent expansion in fractional powers of ρ in a right
neighborhood of 0 (and a convergent expansion in fractional powers of ρ in
any one-sided neighborhood of a point 0 < ρ0 < 1). As Vρ is the the ρδ-
discounted value of the discrete-time stochastic game with payoff function δg

5The finiteness follows from the fact that the minimum and the maximum of a linear
function over a simplex is attained in one of the finitely many extreme points of the
simplex.
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and transitions pδ = δ
1−ρδµ it is bounded by ‖g‖/ρ. Therefore ρ 7→ vρ := ρVρ

is a bounded semialgebraic function. In particular, there is 1) a positive in-
teger M , 2) real coefficients ck(z), and 3) a positive discount rate ρ̄ > 0, such
that for 0 < ρ ≤ ρ̄ the series

∑∞
k=0 ck(z)ρk/M converges and

vρ(z) =
∞∑
k=0

ck(z)ρk/M .

If the game is one of perfect information, then each player has for each
1 > ρ > 0 a pure stationary strategy that is an asymptotic ρ-discounted
optimal strategy. Therefore (following the classical argument from discrete-
time stochastic games) the value function ρ 7→ vρ(z) is a rational function
in ρ in a right neighborhood of 0 (and in any one-sided neighborhood of a
point 1 > ρ0 > 0). It follows that there are ρ̄ > 0 and real coefficients ck(z),
and pure stationary strategies σi, i = 1, 2, such that for ρ ≤ ρ̄ the series∑∞

k=0 ck(z)ρk converges,

vρ(z) =
∞∑
k=0

ck(z)ρk,

and σi is asymptotic ρ-discounted optimal in the family (Γδ)δ>0.

Covariance properties. Fix the sets of states S and actions A. Let
Vρ(g, µ) be the unique solution of the system (2) of S equations. Recall that it
equals the asymptotic ρ-discounted value of any family 〈gδ, pδ〉 that converges
in data to 〈g, µ〉. (It is also the value of the continuous-time stochastic game
〈N,S,A, g, µ〉, e.g., [8].) Consider the function Vρ(g, µ) as a function of ρ, g,
and µ. Obviously, the ρ-discounted asymptotic value Vρ(g, µ) is monotonic
in g and covariant with respect to multiplication of the payoff function g by
a positive scalar. Namely, if g′ ≥ g and α is a nonnegative real number,
Vρ(g

′, µ) ≥ Vρ(g, µ) and Vρ(αg, µ) = αVρ(g, µ). For α > 0, a vector V
satisfies equation (2) if and only if it satisfies the same equation when ρ is
replaced by αρ, g is replaced by αg, and µ is replaced by αµ. Therefore,
Vαρ(αg, αµ) = Vρ(g, µ). (In the continuous-time game interpretation, this
equality is interpreted as, and can be derived by, a simple rescaling of time:
t 7→ αt.)

Now we turn to the expression of the ρ-discounted asymptotic value as a
value of a discrete-time discounted stochastic game.
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If ‖µ‖ ≤ 1, we assign to (the continuous-time game) Γ = 〈N,S,A, g, µ〉
the discrete-time game Γ̄ = 〈N,S,A, g, p = µ〉. By Remark 5, the value
V̄ρ(g, µ) of the discrete-time ρ-discounted (with discount factor 1−ρ) stochas-
tic game Γ̄ = 〈{1, 2}, S, A, g, p = µ〉 equals Vρ(g, (1− ρ)µ) whenever 0 < ρ ≤
1− ‖µ‖.

Summarizing,

Vρ(g, µ) ≥ Vρ(g
′, µ) whenever g ≥ g′, (12)

Vρ(αg, βµ) =
α

β
Vρ/β(g, µ) whenever α ≥ 0 and β > 0, (13)

Vρ(g, µ) = V̄ρ(g,
1

1− ρ
µ) whenever 0 < ρ ≤ 1− ‖µ‖; (14)

equivalently,

V̄ρ(g, µ) = Vρ(g, (1− ρ)µ) whenever 0 < ρ < 1 and ‖µ‖ ≤ 1.(15)

Note that for a constant payoff function g = c, we have ρVρ(c, µ) = c. The
normalization vρ := ρVρ of the function Vρ, is a function of (g, µ): vρ(g, µ) =
ρVρ(g, µ). Given two transition rates µ and µ′,

d(µ, µ′) := max

{
µ(z′, z, a)

µ′(z′, z, a)
,
µ′(z′, z, a)

µ(z′, z, a)
| a ∈ A(z), z, z′ ∈ S

}
− 1,

where by convention x/0 =∞ for x > 0, and 0/0 = 1.

Lemma 1 For every pair of payoff functions g and g′ and every pair of
transition rates µ and µ′ the following inequality holds:

‖vρ(g′, µ′)− vρ(g, µ)‖∞ ≤ 4|S|d(µ, µ′) min{‖g‖, ‖g′‖}+ ‖g − g′‖. (16)

Proof. The proof applies [10, Theorem 6] in conjunction with the covari-
ance properties (13) and (14). Fix ρ, g, g′, µ, µ′. Let β > 0, and note
that d(µ, µ′) = d(µ/β, µ′/β). As µ = βµ/β, equality (13) implies that
vρ(g, µ) = ρ

β
V ρ
β
(g, µ/β) = v ρ

β
(g, µ/β), and similarly, vρ(g

′, µ′) = v ρ
β
(g′, µ′/β).

We choose β > 0 sufficiently large, e.g., β > ρ + max{‖µ‖,‖µ′‖}
1−ρ , so that

ρ/β < 1− ‖µ‖
(1−ρ)β

and ρ/β < 1− ‖µ′‖
(1−ρ)β

. This will enable us to apply equality
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(14) in the third equality below. Therefore,

‖vρ(g′, µ′)− vρ(g, µ)‖∞ = ‖vρ/β(g′, µ′/β)− vρ/β(g, µ/β)‖∞
= ‖ ρ

β
Vρ/β(g′, µ′/β)− ρ

β
Vρ/β(g, µ/β)‖∞

= ‖ ρ
β
V̄ρ/β(g′,

µ′

(1− ρ)β
)− ρ

β
V̄ρ/β(g,

µ

(1− ρ)β
)‖∞

≤ 4|S|d(µ, µ′) min{‖g‖, ‖g′‖}+ ‖g − g′‖,

where the first and second equalities follow from (13), the third equality
follows from (14), and the last inequality follows from [10, Theorem 6]. �

Recall that the family of discrete-time stochastic games Γδ = 〈N,S,A, gδ, pδ〉
converges strongly to Γ = 〈N,S,A, g, µ〉 if for all (z′, z, a) ∈ S×A, gδ(z, a) =
δg(z, a) + o(δ) and pδ(z

′, z, a) = δµ(z′, z, a)(1 + o(1)) as δ → 0+.

Theorem 2 If Γδ = 〈gδ, pδ〉 converges strongly to Γ = 〈g, µ〉 then ρVδ,ρ →δ→0+

ρVρ(µ, g) uniformly in 0 < ρ < 1.

Proof. By Remark 5, Vδ,ρ = Vρ(gδ/δ, (1− ρδ)pδ/δ). Therefore, vδ,ρ = ρVδ,ρ =
vρ(g

′
δ, µδ,ρ) := ρVρ(g

′
δ, µδ,ρ), where g′δ = gδ/δ and µδ,ρ(z

′, z, a) = (1− ρδ)pδ/δ.
Therefore, as ‖g′ − g‖ → 0 as δ → 0+ and d(µ, µδ,ρ) →δ→0+ 0 uniformly in
ρ, inequality (16) implies that ρVδ,ρ = vρ(g

′
δ, µδ,ρ) →δ→0+ vρ(g, µ) uniformly

in ρ. �

4.2 The asymptotic nonstationary discounted value

We start with a few simple and useful properties of nonstationary discount-
ing measures. First, if w is a nonstationary discounting measure on [0,∞]
then w has no atoms in (0,∞), w is absolutely continuous on (0,∞), and
dw
dt

(t) is nonincreasing in 0 < t < ∞. Given a nonstationary discount-
ing measure w on [0,∞] and a finite sequence t̃ = (t0 = 0 < t1 < . . . <
t` < ∞), we define the nonstationary discounting measure w̃t̃, or w̃ for
short, on [0,∞] by w̃([tj, tj+1)) = w([tj, tj+1)), dw̃

dt
(t) being a constant (thus,

dw̃
dt

(t) = w([tj, tj+1))/(tj+1 − tj)) on each interval [tj, tj+1) (0 ≤ j < `), and
w̃ coincides with w on subsets of [t`,∞]. Set d(t̃) := max0≤j<`(tj+1 − tj).
Lemma 2 Let w be a nonstationary measure on [0,∞] and t̃ = (t0 = 0 <
t1 < . . . < t` <∞) a finite sequence. Then,∫ t`

t1

|dw
dt

(t)− dw̃

dt
(t)| dt ≤ 2

∫ t1+d(t̃)

t1

dw

dt
(t) dt, (17)
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and if the nonstationary discounting measures wδ on [0,∞] converge to the
measure w on [0,∞] then∫ t`

t1

|dwδ
dt

(t)− dw

dt
(t)| dt→δ→0+ 0. (18)

Proof. As dw
dt

(t) is nonincreasing in t,
∫ tj+1

tj
|dw
dt

(t)− dw̃
dt

(t)| dt ≤ 2
∫ tj+1

tj

dw
dt

(t)−
dw
dt

(t+d(t̃)) dt. Therefore
∫ t`
t1
|dw
dt

(t)−dw̃
dt

(t)| dt =
∑

1≤j<`
∫ tj+1

tj
|dw
dt

(t)−dw̃
dt

(t)| dt ≤

2
∑

1≤j<`
∫ tj+1

tj

dw
dt

(t)− dw
dt

(t+ d(t̃)) dt ≤ 2
∫ t1+d(t̃)

t1

dw
dt

(t) dt, which proves (17).

In order to prove (18), it suffices to prove that for every ε > 0 there is
δ0 > 0 such that for 0 < δ < δ0,

∫ t`
t1
|dwδ
dt

(t)− dw
dt

(t)| dt < 4ε. Fix ε > 0.
For every d > 0 and a nonstationary discounting measure ν on [0,∞], we

define the nonstationary discounting measures νd on [0,∞] by νd([a, b]) =
1
d

∫ d
0
ν([a + t, b + t]) dt. Note that dwd

dt
(t) and

dwdδ
dt

(t) are continuous at each

t <∞ and
dwdδ
dt

(t)→δ→0+
dwd

dt
(t). Therefore,

∫ t`
t1
|dw

d
δ

dt
(t)− dwd

dt
(t)| dt→δ→0+ 0.

As dw
dt

(t) is nonincreasing in t,
∫ t`
t1
|dw
dt

(t)− dwd

dt
(t)| dt =

∫ t`
t1

dw
dt

(t)− dwd

dt
(t) dt ≤∫ t1+d

t1

dw
dt

(t) dt−
∫ t`+d
t`

dw
dt

(t) dt ≤ w([t1, t1+d]). Similarly,
∫ t`
t1
|dwδ
dt

(t)−dwdδ
dt

(t)| dt ≤
wδ([t1, t1 + d]). Let d > 0 be sufficiently small so that w([t1, t1 + d]) < ε, and

δ0 > 0 be sufficiently small so that for all 0 < δ < δ0,
∫ t`
t1
|dw

d
δ

dt
(t)− dwd

dt
(t)| dt <

ε. Therefore, as |dwδ
dt

(t)− dw
dt

(t)| ≤ |dwδ
dt

(t)− dwdδ
dt

(t)|+|dw
d
δ

dt
(t)− dwd

dt
(t)|+|dwd

dt
(t)−

dw
dt

(t)|, ∫ t`

t1

|dwδ
dt

(t)− dw

dt
(t)| dt < 4ε.

�

Theorem 3 Let w be a nonstationary discounting measure on [0,∞), t ≥
0, and ν : A → R. Then a family (Γδ)δ>0 that converges in data has an
asymptotic (w, t, ν) value, and if wδ, δ > 0, are nonstationary discounting
measures on N that converge to w, and mδ ≥ 0 and νδ : A → R are such
that (mδ, νδ) converges to (t, ν) (as δ → 0+), then for every ε > 0 there
are ε-optimal Markov strategies in Γmδ,νδδ,wδ

that converge to a continuous-time
Markov strategy.

Before turning to the proof of the theorem, we introduce a useful auxiliary
lemma.
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Fix a payoff function g : A → R and a transition rate function µ :
S × A → R with µ(z′, z, a) ≥ 0 if z′ 6= z and

∑
z′∈S µ(z′, z, a) = 0. Let

‖µ‖ := max(z,a)∈A |µ(z, z, a)|. For every z ∈ S, α, β > 0, V ∈ RS, and
x ∈ ∆(A(z)), F (z, x, α, β, V ) is defined by

F (z, x, α, β, V ) = αg(z, x) + V (z) +
∑
z′∈S

βµ(z′, z, x)V (z′),

and T (α, β, V ) ∈ RS is defined by

T (α, β, V )(z) = max
x1∈X1(z)

min
x2∈X2(z)

F (z, x1 ⊗ x2, α, β, V ).

Let V1 ∈ RS, α, β > 0, and define V0 ∈ RS by V0 = T (α, β, V1). Given a
sequence γ = (0 = γ0 < . . . < γm = 1), define Uγj , 0 ≤ j ≤ m (recursively
in j) by U1 = Uγm = V1, and for 0 ≤ j < m and z ∈ S, Uγj = T ((γj+1 −
γj)α, (γj+1−γj)β, Uγj+1

). If d(γ) := max0≤j<m γj+1−γj is sufficiently small so
that d(γ)β‖µ‖ ≤ 1, Γ(γ) denotes the m-stage game with set of plays S×Am,
the payoff of a play z0, a0, . . . , zm is V1(zm) +

∑
0≤j<m(γj+1 − γj)αg(zj, aj),

and past play is observed by the players, and the “states transitions” are
such that the conditional probability of zj+1 = z, given z0, a0, . . . , aj, is
Izj ,z + (γj+1 − γj)βµ(z, zj, aj).

Lemma 3 Assume that β‖µ‖ ≤ 1/2. Then, 1) the game Γ(γ) is well
defined and its value equals U0, 2) the stationary strategy σ of player 1
(respectively, τ of player 2) that for every state z ∈ S, σ(z) maximizes
minx2∈X2(z) F (z, σ(z)⊗x2, α, β, V1), (respectively, τ(z) minimizes maxx1∈X1(z) F (z, x1⊗
τ(z), α, β, V1)) is (4β‖µ‖(α‖g‖+ 4β‖µ‖‖V1‖)-optimal in Γ(γ), and 3) ‖U0−
V0‖ ≤ 4β‖µ‖(α‖g‖+ 4β‖µ‖‖V1‖).

Proof. For every (zj, aj) ∈ A, the condition d(γ)β‖µ‖ ≤ 1 implies that
Izj ,z + (γj+1 − γj)βµ(z, zj, aj) ≥ 0, and in addition

∑
z∈S(Izj ,z + (γj+1 −

γj)βµ(z, zj, aj)) = 1. Therefore Γ(γ) is well defined. The recursive formula
for the value of the m-stage game Γ(γ) shows that the value of Γ(γ) equals
U0.

For every strategy profile σ in Γ(γ) and state z, P z
σ (z0 = z1 = . . . =

zm) ≥
∏

0≤j<m(1 − (γj+1 − γj)β‖µ‖) ≥ 1 − β‖µ‖. Therefore, for every
Markov strategy profile σ in Γ(γ) and state z,

Ez
σ

∑
0≤j<m

(γj+1 − γj)αg(zj, aj) ≥ αg(z, σ̄(z))− 2β‖µ‖α‖g‖,

36



where σ̄(z) =
∑

0≤j<m(γj+1 − γj)σ(z, j).

Let σ1 be a stationary strategy of player 1 in Γ(γ) such that for every
state z ∈ S, σ1(z) maximizes minx2∈X2(z) F (z, σ(z) ⊗ x2, α, β, V1). Then for
every Markov strategy σ2 of player 2 in Γ(γ), inequality (1) implies that∑

z′∈S |P z
σ (zm = z′)− Iz,z′ − βµ(z′, z, σ̄(z))| ≤ e2β‖µ‖− 1− 2β‖µ‖ ≤ 4β2‖µ‖2,

where σ is the strategy profile (σ1, σ2) and the last inequality uses the as-
sumption 2β‖µ‖ ≤ 1. Therefore,

Ez
σ

(
V1(zm) +

∑
0≤j<m

(γj+1 − γj)αg(zj, aj)

)
≥ V0(z)−2β‖µ‖(α‖g‖+4β‖µ‖‖V1‖).

Let τ 2 be a stationary strategy of player 2 in Γ(γ) such that for every
state z ∈ S, τ 2(z) minimizes maxx1∈X1(z) F (z, σ(z) ⊗ x2, α, β, V1). Then, by
duality, for every Markov strategy τ 1 of player 1 in Γ(γ),

Ez
τ (V1(zm) +

∑
0≤j<m

(γj+1−γj)αg(zj, aj) ≤ V0(z) + 2β‖µ‖(α‖g‖+ 4β‖µ‖‖V1‖),

where τ = (τ 1, τ 2).
Therefore, ‖U0 − V0‖ ≤ 4β‖µ‖(α‖g‖ + 4β‖µ‖‖V1‖) and σ1 and τ 2 are

(4β‖µ‖(α‖g‖+ 4β‖µ‖‖V1‖))-optimal. �

Proof of Theorem 3. The first stage of the proof is obtained by associating
an extensive form `-stage game Γ(t̃) with a finite sequence t̃ = (t0 = 0 < t1 <
. . . < tk = t < tk+1 < . . . < t`) of times (and the triple (w, t, ν)) as follows.

The game Γ(t̃) is an `-stage “stochastic game” with 1) the same sets of
states, actions, and players as in Γδ, 2) stage-dependent payoffs (that also
incorporate an extra payment in stage k), and 3) stage-dependent transitions.
Let ∆j := tj+1 − tj and let t̃ be such that d(t̃) is sufficiently small so that
d(t̃)‖µ‖ < 1/2. A play of Γ(t̃) is a sequence (z̃0, ã0, . . . , z̃`) with ãj ∈ A(z̃j)

and the payoff of the play (z̃0, ã0, . . . , z̃`) is ν(z̃k, ãk)+
∑`−1

j=0wjg(z̃j, ãj), where
wj := w([tj, tj+1)).

Past play is observed by the players. Therefore, a strategy of a player
chooses his action at stage j = 0, . . . , `−1 as a function of (z̃0, ã0, . . . , z̃j). The
conditional probability, given z̃0, ã0, . . . , z̃j, ãj, of z̃j+1 = z is ∆jµ(z, z̃j, ãj) +
Iz̃j ,z. It is helpful to view the states transitions in Γ(t̃) as those of an “exact”
stochastic game whose j-th stage duration, 0 ≤ j < `, is ∆j. The game Γ(t̃)
has a value Ṽ and the players have Markovian optimal strategies.
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The value Ṽ equals Ṽ0, where Ṽj ∈ RS are defined recursively for 0 ≤ j ≤
`. For every z ∈ S, Ṽ`(z) = 0, and for 0 ≤ j < ` we define Ṽj(z) by

Ṽj(z) = max
x1∈X1(z)

min
x2∈X2(z)

(
1j=kν(z, x) + F (z, x, wj,∆j, Ṽj+1)

)
,

where x = x1 ⊗ x2.
Note that for every j < `, ‖Ṽj‖ ≤ 1j=k‖ν‖ + wj‖g‖ + ‖Ṽj+1‖, where

‖ν‖ = max(z,a)∈A |ν(z, a)|. Therefore, by induction on 0 ≤ `− j ≤ `, ‖Ṽj‖ ≤
1j≤k‖ν‖+

∑
j′≥j wj′‖g‖ ≤ ‖ν‖+ w([0,∞))‖g‖.

The Markov strategy σ̃ of player 1 in Γ(t̃) with σ̃(z, j) maximizing (over
all x1 ∈ X1(z))

min
x2∈X2(z)

(
1j=kν(z, x1 ⊗ x2) + F (z, x1 ⊗ x2, wj,∆j, Ṽj+1)

)
is an optimal strategy of player 1 in Γ(t̃). Indeed, for every strategy τ of
player 2 in Γ(t̃) and stage 0 ≤ j < `,

Ez
σ̃,τ (1j=kν(z̃j, ãj) + wjg(z̃j, ãj)) ≥ Ez

σ̃,τ

(
Ṽj(z̃j)− Ṽj+1(z̃j+1)

)
.

Therefore, by summing these inequalities over 0 ≤ j < `, we have

Ez
σ̃,τ

(
ν(z̃k, ãk) +

∑
0≤j<`

wjg(z̃j, ãj)

)
≥ Ṽ0(z).

The second stage of the proof is to associate with t̃, σ̃, and δ > 0, a
sequence m̃δ = (mδ,0 = 0 < mδ,1 < . . . < mδ,`), a Markov strategy σδ in Γδ,
and a nonstationary discounting measure w̃δ, as follows.

For mδ,j ≤ m < mδ,j+1, σδ(z,m) = σ̃(z, j), for m ≥ mδ,`, σδ(z,m) co-
incides with an arbitrary stationary strategy, mδ,k = mδ, mδ,j = [tj/δ] for
j 6= k (thus δmδ,j →δ→0+ tj for all 0 ≤ j < `, w̃δ(m) = wδ(m) for m ≥ mδ,`,
and w̃δ(m) = 1

mδ,j+1−mδ,j

∑
mδ,j≤m<mδ,j+1

wδ(m) for mδ,j ≤ m < mδ,j+1 and

j < `.
Note that w̃δ is a nonstationary discounting measure that converges, as

δ → 0+, to w.
Consider the family of games Γ̃mδ,νδδ,w̃δ

with g̃δ = δg and p̃δ = δµ. By Lemma

3, for every ε > 0, there is a sufficiently small d > 0 such that if t̃ is such that
d(t̃) < d and w([t`,∞)) < d, then, for sufficiently small δ > 0, the Markov
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strategy σδ guarantees in Γ̃mδ,νδδ,w̃δ
a payoff that is at least Ṽ −ε. Therefore, for

sufficiently small δ > 0, the Markov strategy σδ guarantees in Γmδ,νδδ,w̃δ
a payoff

that is at least Ṽ − 2ε.
Note that for sufficiently small δ > 0, P z

σ (zm = z ∀m ≤ mδ,1) ≥ 1 −
d‖µ‖ for every strategy profile σ and state z. Therefore, if d‖µ‖‖Ṽ1‖ <
ε/4, for sufficiently small δ > 0, for every strategy τ of player 2, we have
Ez
σδ,τ

(Ṽ1(zmδ,1) +
∑

m<mδ,1
wδ(m)gδ(zm, am)) ≥ Ṽ0(z) − 2d‖µ‖‖Ṽ1‖ − ε/2 >

Ṽ0(z)− ε.
By Lemma 2,

∑
m≥mδ,1 |w̃δ(m) − wδ(m)| → 0 as δ → 0+. If δ > 0 is

sufficiently small so that
∑

m≥mδ,1 |w̃δ(m) − wδ(m)| < ε, then σδ guarantees

in Γmδ,νδδ,wδ
a payoff that is at least Ṽ − 3ε− ε‖g‖. By the construction of σδ,

σδ converges to a continuous-time Markov strategy.
Similarly, we associate with the Markov strategy τ̃ (and δ > 0) a Markov

strategy τδ that for δ > 0 sufficiently small guarantees in Γmδ,νδδ,wδ
a payoff that

is at most Ṽ + 3ε+ ε‖g‖ while τδ converges to a continuous-time strategy τ .
�

4.3 The asymptotic limiting-average value

Recall that the family (Γδ)δ>0 has an asymptotic limiting-average value v if
for every ε > 0 there are δ0 > 0 sufficiently small and strategies σδ and τδ in
Γδ, such that for every strategy pair (σ∗, τ ∗), every initial state z, and every
0 < δ < δ0, we have

ε+ Ez
σδ,τ∗

g
δ
≥ v(z) ≥ −ε+ Ez

σ∗,τδ
ḡδ. (19)

Theorem 4 A family (Γδ)δ>0 that converges strongly has an asymptotic
limiting-average value.

Proof. Let g = limδ→0+ gδ/δ and µ = limδ→0+ pδ/δ. As the function ρ 7→
vρ(g, µ) is semialgebraic and bounded, it converges to a limit v as ρ →
0+. Fix ε > 0. As every discrete-time stochastic game with finitely many
states and actions has a limiting-average value [5], which is the limit of its
ρ-discounted values as ρ goes to 0+, there are strategies σδ of player 1 and τδ
of player 2, such that for every strategy pair (σ∗, τ ∗) and every initial state
z ∈ S,

ε/2 + Ez
σδ,τ∗

g
δ
≥ lim

ρ→0+
vδ,ρ(z) ≥ −ε/2 + Ez

σ∗,τδ
ḡδ. (20)
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As vδ,ρ → vρ(g, µ) uniformly in ρ, there is δ0 > 0 such that for every 0 <
δ < δ0 and every state z ∈ S, |vδ,ρ(z) − vρ(g, µ)(z)| < ε/2. Therefore, for
0 < δ < δ0, | limρ→0+ vδ,ρ(z)− v(z)| ≤ ε/2, which together with (20) implies
(19). �

Remark 10 A family (Γδ)δ>0 that converges in data need not have an asymp-
totic limiting-average value.

For example, consider a game with two states and a single action for each
player in each state. The payoff in state one is 1 and in state 2 it is 0. State 2
is absorbing, i.e., Pδ(1 | 2) = 0, and the probability of transition from state 1
to state 2, Pδ(2 | 1), equals δ2 if δ is rational, and it equals 0 if δ is irrational.
Then, vδ,0 = 0 if δ is rational, and vδ,0 = 1 if δ is irrational. Therefore vδ,0
does not converge as δ goes to 0.

4.4 The asymptotic mixed discounting and limiting-
average value

For every positive measure wδ on N ∪ {∞}, Γδ,wδ is the game Γδ where the
valuation of a play (z0, a0, z1, . . .) of Γδ is given by

∑∞
m=0wδ(m)gδ(zm, am) +

wδ(∞) lims→∞ gδ(s), if the limit exists. Obviously, the limit need not exist.
We say that the two-person zero-sum game Γδ,wδ has a value Vδ,wδ , if for

every ε > 0 there are strategies σδ of player 1 and τδ of player 2, such that
for every strategy τ of player 2, strategy σ of player 1, and initial state z, we
have

Ez
σδ,τ

(
wδ(∞)g

δ
+
∞∑
m=0

wδ(m)gδ(zm, am)

)
≥ Vδ,wδ(z)− ε

and

Ez
σ,τδ

(
wδ(∞)ḡδ +

∞∑
m=0

wδ(m)gδ(zm, am)

)
≤ Vδ,wδ(z) + ε.

Theorem 5 If Γδ converges strongly and the nonstationary discounting mea-
sure wδ converges to a positive measure w on [0,∞], and wδ(∞) converges
to w(∞), then Vδ,wδ converges.

Proof. The proof is obtained by collating the result of Theorem 3 with the
result of Theorem 4. Let 0 < ε < 1. Let 0 < t < ∞ be sufficiently large
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so that 2w([t,∞))‖g‖ < ε, and let wt be the restriction of w to the interval
[0, t). Let v be the asymptotic limiting-average value of the family (Γδ)δ>0,
and define ν : A → R by ν(z, a) = w(∞)v(z). The family (Γδ)δ>0 has an
asymptotic (wt, t, ν) value V .

Assume that the nonstationary discounting measure wδ converges to w
and wδ(∞) converges to w(∞). Let mδ = [t/δ] and let wδ,t be the restriction
of wδ to {0, 1, . . . ,mδ}.

The value V mδ,ν
δ,wδ,t

of the game Γmδ,νδ,wδ,t
converges to V . Recall that as Γδ con-

verges strongly, the limiting-average value of the game Γδ, which is denoted
by vδ,0, converges as δ goes to zero to v. Let δ0 be sufficiently small so that for
0 < δ < δ0, 1) ‖V mδ,ν

δ,wδ,t
− V ‖ < ε, 2) ‖vδ,0 − v‖ < ε, 3) ‖wδ(∞)− w(∞)‖ < ε,

and 4) ‖g‖
∑∞

m=mδ
wδ(m)| < ε.

Let σδ follow an optimal strategy in Γmδ,νδ,wδ,t
up to stage mδ, and thereafter

it “restarts” with an ε-optimal strategy in the limiting-average game Γδ. It
follows that for every 0 < δ < δ0 and strategy τ of player 2,

Ez
σδ,τ

(
wδ(∞)ḡδ +

∞∑
m=0

wδ(m)gδ(zm, am)

)
≥ V (z)− εw(∞)− 3ε.

Similarly, if τδ follows an optimal strategy in Γmδ,νδ,wδ,t
up to stage mδ, and

thereafter it “restarts” with an ε-optimal strategy in the limiting-average
game Γδ, then for every 0 < δ < δ0 and strategy σ of player 1,

Ez
σ,τδ

(
wδ(∞)ḡδ +

∞∑
m=0

wδ(m)gδ(zm, am)

)
≤ V (z) + εw(∞) + 3ε.

�

4.5 The asymptotic uniform and w-robust value

Theorem 6 An exact family of two-person zero-sum games Γδ has an asymp-
totic uniform value.

Proof. Let v = limδ→0+ vδ,0. It is sufficient to prove that for every ε > 0
there are 1) a duration δ0 > 0, 2) strategies σδ of player 1 and τδ of player 2,
and 3) a positive real number sε, such that for every strategy τ of player 2,
strategy σ of player 1, 0 < δ < δ0, and s > sε we have

Ez
σδ,τ

gδ(s) ≥ v(z)− ε, (21)
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and
Ez
σ,τδ

gδ(s) ≤ v(z) + ε. (22)

By duality, it suffices to prove (21).
Let A = max{|g(z, a)| : (z, a) ∈ A}, and gδ = δg.
The first step is to show that for an exact family Γδ the following property

holds. There is an integrable function ψ : [0, 1]→ R+ and δ0 > 0 sufficiently
small such that for 0 < ρ < ρ′ ≤ 1 and 0 < δ < δ0, we have

‖vδ,ρ − vδ,ρ′‖ ≤
∫ ρ′

ρ

ψ(x) dx. (23)

The second step is to show that if the family Γδ of two-person zero-
sum games satisfies the above-mentioned property, then it has an asymptotic
uniform value.

We start with the first step. Fix the payoff function g and the transition
rates µ. By the covariance properties, Vδ,ρ = V̄ρδ(δg, δµ) = Vρδ(δg, (1 −
ρδ)δµ) = δ

(1−ρδ)δV δρ
(1−δρ)δ

(g, µ) = 1
1−ρδV ρ

(1−ρδ)
(g, µ). Therefore,

vδ,ρ = v ρ
(1−ρδ)

(g, µ).

The function ρ 7→ vρ := vρ(g, µ) (is semialgebraic and thus) has a convergent
expansion, vρ(z) =

∑∞
k=0 ck(z)ρk/K (where K is a positive integer), in a right

neighborhood of 0. Therefore there is 1/2 > ρ0 > 0 such that its derivative,
v′ρ(z) := d

dρ
vρ(z), exists in the interval (0, 2ρ0], and its absolute value is

bounded by a positive constant C1 times ρ1/K−1. Therefore, for δ < 1/4,
the derivative d

dρ
v ρ

(1−ρδ)
of the function (0, ρ0] 3 ρ 7→ v ρ

(1−ρδ)
:= v ρ

(1−ρδ)
(g, µ)

equals 1
(1−ρδ)2v

′
ρ

(1−ρδ)
; thus, it is bounded (in the interval (0, ρ0]) by a positive

constant C2 times ρ1/K−1. (E.g., C2 = 2C1.) The function ρ 7→ vδ,ρ is
(2A/ρ0)-Lipschitz in ρ in the interval (ρ0, 1] (‖vδ,ρ− vδ,θ‖ ≤ 2A|ρ− θ|/ρ, e.g.,
by [5, Lemma 4.2]). The function ψ that is defined by ψ(x) = 2C1x

1/K−1 for
0 < x ≤ ρ0 and ψ(x) = 2A/ρ0 for 1 ≥ x > ρ0 is integrable and satisfies (23).

We turn now to the second step. Let Γδ be a converging family, ψ :
[0, 1]→ R+ be an integrable function, and δ0 > 0, such that for 0 < ρ < ρ′ ≤
1 and 0 < δ < δ0, inequality (23) holds.

Fix ε > 0 and w.l.o.g. we assume that 0 < ε < A. Fix δ0 > 0 and λ0 > 0
sufficiently small so that for 0 < δ < δ0 and 0 < ρ < λ0, ‖vδ,ρ − v‖ < ε.
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Fix 0 < δ < δ0. We apply the proof of the existence of a value of the
discrete-time stochastic game 〈δg, δµ〉, [5, Section 2]. In what follows we
define a strategy σδ of player 1 in Γδ. We will define a sequence (ρk)

∞
m=0 so

that ρk is a function of the past history up to stage k[1/δ], i.e., measurable
with respect to the σ-algebra Fk := Hk[1/δ] where [∗] stands for the largest
integer that is ≤ ∗. The (ρk)

∞
k=0 strategy σδ of player 1 is to play a stationary

optimal strategy in Γδ,ρk at stage k[1/δ] ≤ m ≤ (k + 1)[1/δ]. Let

yk =
∑

k[1/δ]≤m<(k+1)[1/δ]

(1− δρk)m−k[1/δ]δg(zm, am)

xk =
∑

k[1/δ]≤m<(k+1)[1/δ]

δg(zm, am), and

z̄k = zk[1/δ].

For every strategy τ of player 2, we have

Eσδ,τ (ρkyk + (1− δρk)[1/δ]vδ,ρk(z̄k+1) | Fk) ≥ vδ,ρk(z̄k).

Note that for every ε > 0 there is λ0 > 0 and δ0 such that for 0 < ρk < λ0

and 0 < δ < δ0 we have∑
k[1/δ]≤m<(k+1)[1/δ]

|(1− δρk)m−k[1/δ]−1|δρk + |(1− δρk)[1/δ]− (1−ρk)| ≤ ερk/A.

It follows that for 0 < δ < δ0 and 0 < ρk < λ0 we have

Eσδ,τ (vδ,ρk(z̄k+1)− vδ,ρk(z̄k) + ρk(xk − vδ,ρk(z̄k+1)) | Fk) ≥ −ερk (24)

for every strategy τ of player 2. Now one follows the proof of [5, Section 2] by
replacing inequality [5, (2.1)] with inequality (24). The index i in [5, Section
2] is replaced by our stage index k (λi by ρk, vλ by vδ,ρ, and zi by z̄k).

With these substitutions, inequality [5, (2.15)] becomes∑
k<n

xk ≥
∑
k<n

vδ,ρk(z̄k+1) + sn − s0 − 2A
∑
k<n

I(sk+1 = M)− 4nε. (25)

Note that the term −ερk in inequality (24) does not appear in [5, (2.1)].
It impacts inequality [5, (2.9)] as −ερk needs to be added to its right side.
Therefore, we have to replace [5, (2.9)] with E(Yk+1− Yk | Fk) ≥ ερk (where
E stands for Eσδ,τ ), and therefore E#{k : ρk ≥ η} ≤ A

εη
(rather than ≤ 2A

εη
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in [5, (2.12)]). Therefore, E
∑

k<n I(sk+1 = M) ≤ A
ελ(M)

and therefore for n

sufficiently large E
∑

k<n I(sk+1 = M) ≤ εn/(2A).
For δ and ρ sufficiently small, ‖vδ,ρ − v‖ ≤ ε, where v = limδ→0 vδ,0.

Therefore, inequality (25) implies that

Eσδ,τ
∑
k<n

xk ≥ nv(z0)− 3εn− s0 − εn− 4nε. (26)

�

Remark 11 Note that the inequality E
∑

k<n I(sk+1 = M) ≤ A
ελ(M)

(in the

above proof) implies that
∑

k<∞ I(sk+1 = M) is finite a.s. Therefore,

Eσδ,τ (lim inf
n→∞

1

n

∑
m<n

g(zm, am)) = Eσδ,τ (lim inf
n→∞

1

n

∑
k<n

xk) ≥ v(z0)− 7ε.

This shows that the above-constructed strategy σδ of player 1 is approximate
optimal in both the uniform game and the limiting-average game. Therefore
an exact family of two-person zero-sum games Γδ has an asymptotic 1∞-
robust value.

Theorem 7 For every nonstationary discounting measure w on [0,∞], an
exact family of two-person zero-sum games Γδ has an asymptotic w-robust
value.

Proof. If w(∞) = 0 then an asymptotic w value is a w-robust value. There-
fore it suffices to prove the result for w with w(∞) > 0. For every β > 0,
the family (Γδ)δ>0 has an asymptotic w-robust value if and only if it has an
asymptotic βw-robust value. Therefore, we may assume that w(∞) = 1.

Let ν be the asymptotic 1∞-robust value of the exact family (Γδ)δ>0. Fix
ε > 0 and let τδ be a family of strategy profiles that are ε-optimal in the 1∞-
robust game. Let t = tε <∞ be sufficiently large so that w([t,∞) < ε/‖g‖.
The family (Γδ)δ>0 has an asymptotic (wt, t, ν) value vε, where wt is the
restriction of w to the interval [0, t). Let mδ = [t/δ] and let τδ be a profile of
strategies that is optimal in Γmδ,νδ,wδ,t

, where wδ,t is the nonstationary discounting

measure that satisfies wδ,t(m) = w([mδ, (m+1)δ)) if m < mδ and wδ,t(m) = 0
otherwise.

The strategy profile σδ follows the strategy profile τδ,t in stages 0 ≤
m < mδ and in stage mδ starts following the strategy profile τδ (explicitly,
σδ(z0, a0, . . . , zmδ+k) = τδ(zmδ , . . . , zmδ+k)).
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Then for every player i, all strategies τ̄ iδ (δ > 0) of player i, and all
nonstationary discounting measures wδ on N∪{∞} that converge (as δ → 0+)
to w, we have

2ε+ lim inf
δ→0+

Ez
σ1
δ ,τ̄

2
δ
g
δ
(wδ) ≥ vε(z) ≥ −2ε+ lim inf

δ→0+
Ez
τ̄1δ ,σ

2
δ ,
ḡδ(wδ).

A limit point (as ε → 0+) of vε is an asymptotic w-robust value of the
family (Γδ)δ>0. �

5 Non-zero-sum stochastic games with short-

stage duration: the discounted games

5.1 The asymptotic discounted equilibrium

Fix the sets of playersN , states S, and actionsA, and let Γδ = 〈N,S,A, gδ, pδ〉
be a stochastic game whose stage payoff function gδ and transition function pδ
depend on the parameter δ > 0 that represents the single-stage duration. Let
Γδ,ρ be the (unnormalized) discounted game Γδ with discount factor 1− ρδ.
We say that pair (V, σ), where V ∈ RN×S is a payoff vector and σ is a strat-
egy profile, is an asymptotic ρ-discounted ε-equilibrium of (Γδ)δ>0 if for every
δ > 0 sufficiently small, every player i ∈ N , every strategy τ i of player i in
Γδ, and every state z,

−ε+Ez
δ,σ−i,τ i

∞∑
m=0

(1−δρ)mgiδ(zm, am) ≤ V i(z) ≤ Ez
δ,σ

∞∑
m=0

(1−δρ)mgiδ(zm, am)+ε.

The pair (V, σ) is an asymptotic ρ-discounted equilibrium if it is an asymptotic
ρ-discounted ε-equilibrium for every ε > 0. It is called an asymptotic ρ-
discounted stationary ε-equilibrium, respectively an asymptotic ρ-discounted
stationary equilibrium, if, in addition, σ is stationary.

Theorem 8 Every converging family (Γδ)δ>0 has an asymptotic ρ-discounted
stationary equilibrium.

Proof. Let σ be a stationary strategy and Vρ ∈ RN×S such that for every
z ∈ S, i ∈ N , and ai ∈ Ai(z), we have

ρV (z) = g(z, σ(z)) +
∑
z′∈S

µ(z′, z, σ(z))V (z′),
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and
ρV i(z) ≥ gi(z, σ(z)−i, ai) +

∑
z′∈S

µ(z′, z, σ(z)−i, ai)V (z′).

The existence of such a pair (V, σ) follows (as in the proof of Theorem 1) from
the existence of stationary equilibria in discounted discrete-time stochastic
games; alternatively, see, e.g., [8].

Let τ i be a strategy of player i. Fix an initial history hm = (z0, a0, . . . , zm),
and let ym = σ(zm), xim = τ i(hm), and xm = σ−i(zm)⊗ xim. Let

Ym := Eδ,σ
(
giδ(zm, am) + (1− ρδ)V i

ρ (zm+1) | hm)
)

= giδ(zm, ym) + (1− ρδ)
∑
z′∈S

Pδ(z
′ | zm, ym)V i

ρ (z′),

and

Um := Eδ,σ−i,τ i
(
giδ(zm, am) + (1− ρδ)V i

ρ (zm+1) | hm)
)

= giδ(zm, xm) + (1− ρδ)
∑
z′∈S

Pδ(z
′ | zm, xm)V i

ρ (z′).

It follows that

Ym ≥ δgi(zm, ym) +
∑
z′∈S

δµ(z′, z, ym)V i(z′)− ρδV i(zm) + V i(zm)− o(δ)

≥ V i(zm)− o(δ).

Therefore,

Ez
δ,σ

∞∑
m=0

(1− ρδ)mgiδ(zm, am) ≥ V i(z0)− o(δ)
∞∑
m=0

(1− ρδ)m →δ→0+ V i(z0).

Similarly,

Um ≤ δgi(zm, am) +
∑
z′∈S

δµ(z′, z, xm)V i(z′)− ρδV i(zm) + V i(zm) + o(δ)

≤ V i(zm) + o(δ).

Therefore,

Ez
δ,σ−i,τ i

∞∑
m=0

(1− ρδ)mgiδ(zm, am) ≤ V i(z) + o(δ)
∞∑
m=0

(1− ρδ)m →δ→0+ V i(z).

46



We conclude that for sufficiently small δ > 0 we have

−ε+Ez
δ,σ−i,τ i

∞∑
m=0

(1−ρδ)mgiδ(zm, am) ≤ V i(z) ≤ Ez
δ,σ

∞∑
m=0

(1−ρδ)mgiδ(zm, am)+ε.

�

Remark 12 The conclusion of Theorem 8 (as well as its proof) holds also
for the model with individual discount rates −→ρ = (ρi)i∈N .

Covariance properties. Fix α, β > 0. A point (x, V ) ∈ ×z∈S,i∈N(X i(z) ×
[−‖gi‖/ρ, ‖gi‖/ρ]) is a stationary equilibrium (strategies and payoffs) of the
continuous-time ρ-discounted game Γ = 〈N,S,A, g, µ〉 if and only if (x, V )
is a stationary equilibrium of the continuous-time αρ-discounted game Γ =
〈N,S,A, αg, αµ〉, and given 0 < ρ < 1 and ‖µ‖ ≤ 1 − ρ, if and only if
it is a stationary equilibrium of the discrete-time ρ-discounted game Γ̄ =
〈N,S,A, g, p̄〉, where p̄ is the transition probability that is given by p̄(z′, z, a) =

1
1−ρµ(z′, z, a) for all z′ 6= z.

5.2 The asymptotic discounted minmax

Fix the sets of playersN , states S, and actionsA, and let Γδ = 〈N,S,A, gδ, pδ〉
be a stochastic game whose stage payoff function gδ and transition function
pδ depend on the parameter δ > 0 that represents the single-stage duration.
The (unnormalized) ρ-discounted minmax of the discrete-time game Γδ is
defined as the (uncorrelated) minmax of the discrete-time stochastic game
Γδ with discount factor 1 − δρ. It exists and is denoted by Vδ,ρ. We say
that Vρ ∈ RN×S is the (unnormalized) asymptotic ρ-discounted minmax of
the family (Γδ)δ>0 if Vδ,ρ → Vρ as δ → 0+.

Using arguments analogous to those used in earlier sections, it follows
that 1) Vδ,ρ = (V i

δ,ρ(z))(i,z)∈N×S is the unique solution of the following system
of |N × S| equalities,

δρV i(z) = min
x−i∈X−i(z)

max
xi∈Xi(z)

giδ(z, x
−i⊗xi)+(1−δρ)

∑
z′∈S

pδ(z
′, z, x−i⊗xi)V i(z′),

where X−i(z) := ×j 6=iX i(z), 2) a family (Γδ)δ>0 (Γδ = 〈gδ, pδ〉 for short)
that converges to 〈g, µ〉 has an asymptotic ρ-discounted minmax Vρ, and 3)
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Vρ = (V i
ρ (z))(i,z)∈N×S is the unique solution of the system of |N×S| equalities,

ρV i(z) = min
x−i∈X−i

max
xi∈Xi(z)

g(z, x−i ⊗ xi) +
∑
z′∈S

µ(z′, z, x−i ⊗ xi)V i(z′).

The normalized ρ-discounted minmax values are vρ = ρVρ and vδ,ρ = ρVδ,ρ.
The semialgebraic and covariance properties of the value of zero-sum games
hold for the minmax value of non-zero-sum games as well.

In particular, for fixed gδ, pδ, g, and µ, the maps ρ 7→ vρ and ρ 7→ vδ,ρ are
bounded semialgebraic functions, and thus have a limit as ρ→ 0+, the maps
ρ 7→ Vρ and ρ 7→ Vδ,ρ are semialgebraic, vδ,ρ(gδ, pδ) = vρ(gδ/δ, (1 − ρδ)pδ/δ),
inequality (16) holds, and if Γδ = 〈gδ, pδ〉 converges strongly to Γ = 〈g, µ〉,
then vδ,ρ converges, as δ → 0+, uniformly in ρ.

�

5.3 The asymptotic equilibrium of nonstationary dis-
counting games

The following theorem is a generalization of Theorem 3 to the non-zero-sum
case. Its proof is analogous to the proof of Theorem 3.

Theorem 9 If 1) (Γδ)δ>0 is a family that converges in data, 2) −→w is a
nonstationary discounting N-vector measure on [0,∞), 3) t ∈ R, and 4)
ν : A → RN , then the family (Γδ)δ>0 has an asymptotic (−→w , t, ν) equilibrium
payoff v. If 1) −→w δ is a nonstationary discounting N-vector measure on N
that converges to −→w , and 2) 0 ≤ mδ ∈ N and νδ : A → RN are such
that (mδ, νδ) →δ→0+ (t, ν), then, for every ε > 0, there are Markov strategy
profiles σδ and δ0 > 0 such that 1) for every 0 < δ < δ0, σδ is an ε-equilibrium
of Γmδ,νδ

δ,−→w δ
with an equilibrium payoff within ε of v, and 2) σδ converge w∗ to

a profile of continuous-time Markov strategies.

6 Non-zero-sum stochastic games with short-

stage duration: the limiting-average and

uniform games

Fix the sets of playersN , states S, and actionsA, and let Γδ = 〈N,S,A, pδ, gδ〉
be a stochastic game whose stage payoff function gδ and transition function
pδ depend on the parameter δ > 0 that represents the single-stage duration.
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For every strategy profile σ in Γδ we set

γ̄iδ(z, σ) = Ez
δ,σ ḡ

i
δ, and γi

δ
(z, σ) = Ez

δ,σ g
i

δ
.

6.1 The asymptotic limiting-average and uniform min-
max

We say that the vector v ∈ RN×S is the asymptotic limiting-average minmax
of the family (Γδ)δ>0 if for every ε > 0 there is δ0 > 0 such that for every
player i and 0 < δ < δ0, 1) there is a strategy profile σ−iδ,ε of players N \ {i}
such that for every strategy τ i of player i and every state z ∈ S,

γ̄iδ(z, σ
−i
δ,ε, τ

i) ≤ vi(z) + ε,

and 2) for every strategy profile σ−iδ of players N \ {i} there is a strategy τ i

of player i such that for every state z ∈ S,

γi
δ
(z, σ−iδ , τ

i) ≥ vi(z)− ε.

We say that the vector v ∈ RN×S is the asymptotic uniform minmax of
the family (Γδ)δ>0 if for every ε > 0 there are δ0 > 0 and s0 > 0 such that
for every player i and 0 < δ < δ0, 1) there is a strategy profile σ−iδ,ε of players

N \ {i} such that for every strategy τ i of player i, state z ∈ S, and duration
s > s0,

Ez
σ−iδ,ε,τ

ig
i
δ(s) ≤ vi(z) + ε,

and 2) for every strategy profile σ−iδ of players N \ {i} there is a strategy τ i

of player i such that for s > s0,

Eσ−iδ ,τ ig
i
δ(s) ≥ vi(z)− ε.

We say that the vector v ∈ RN×S is the asymptotic robust minmax of the
family (Γδ)δ>0 if for every ε > 0 there are δ0 > 0 and s0 > 0 such that for
every player i and 0 < δ < δ0, 1) there is a strategy profile σ−iδ,ε of players

N \ {i} such that for every strategy τ i of player i, state z ∈ S, and duration
s > s0,

Ez
σ−iδ,ε,τ

ig
i
δ(s) ≤ vi(z) + ε and γ̄iδ(z, σ

−i
δ,ε, τ

i) ≤ vi(z) + ε,
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and 2) for every strategy profile σ−iδ of players N \ {i} there is a strategy τ i

of player i, such that for every state z ∈ S and duration s > s0,

Ez
σ−iδ ,τ i

giδ(s) ≥ vi(z)− ε and γi
δ
(z, σ−iδ , τ

i) ≥ vi(z)− ε.

Theorem 10 A family (Γδ)δ>0 that converges strongly to Γ = 〈µ, g〉 has a
limiting-average minmax v : S → RN , which is the limit of ρVρ as ρ → 0+,
where Vρ is the unique solution of the following system of equalities:

ρV i(z) = min
x−i

max
yi

(
gi(z, x−i, yi) +

∑
z′∈S

µ(z′, z, x−i, yi)V i(z)

)
, ∀i ∈ N, z ∈ S.

If the family is exact it has an asymptotic robust minmax (and therefore an
asymptotic uniform minmax as well).

Proof. The proof that a family that converges strongly has an asymptotic
limiting-average minmax is analogous to the proof of Theorem 4. Let ṽδ =
limρ→0+ vδ,ρ.

As every discrete-time stochastic game with finitely many states and
actions has a limiting-average minmax [5, 7], which is the limit of its ρ-
discounted minmax as ρ goes to 0+, it suffices to prove that limδ→0+ ṽδ
exists.

As mentioned in the last section, if 〈gδ, pδ〉 converges strongly, then vδ,ρ
converges to vρ, as δ → 0, uniformly in ρ. Therefore, for every ε > 0 there
is δ1 > 0 such that for 0 < δ, δ′ ≤ δ1 we have ‖vδ,ρ − vδ′,ρ‖ < ε, and therefore
‖ṽδ − ṽδ′‖ ≤ ε.

The proof that an exact family has an asymptotic minmax is analogous
to the proof of Theorem 6.

�

6.2 The asymptotic limiting-average equilibrium

We say that u = (ui(z))i∈N, z∈S ∈ RN×S is an asymptotic limiting-average
ε-equilibrium payoff of (Γδ)δ>0 if for every δ > 0 sufficiently small there is a
strategy profile σδ, such that for every player i ∈ N , strategy τ i of player i,
and state z,

−ε+ γ̄iδ(z, σ
−i
δ , τ

i) ≤ ui(z) ≤ γi
δ
(z, σδ) + ε.

Note that it is an asymptotic limiting-average equilibrium payoff if it is an
asymptotic limiting-average ε-equilibrium payoff for every ε > 0.
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Remark 13 Note that the existence of a limiting-average equilibrium, re-
spectively ε-equilibrium, payoff in each one of the games Γδ does not imply
(and is not implied by) the existence of an asymptotic limiting-average equi-
librium, respectively ε-equilibrium, payoff of the family (Γδ)δ>0.

Remark 14 If uε ∈ RN×S is an asymptotic limiting-average ε-equilibrium
payoff of the family (Γδ)δ>0 and u ∈ RN×S, then u is an asymptotic limiting-
average ε′-equilibrium payoff of the family (Γδ)δ whenever ε′ ≥ ε + ‖u −
uε‖. Therefore a limit point, as δ → 0+, of asymptotic limiting-average
ε-equilibrium payoffs is an asymptotic limiting-average ε′-equilibrium payoff
whenever ε′ > ε, and a limit point, as ε→ 0+, of asymptotic limiting-average
ε-equilibrium payoffs is an asymptotic limiting-average equilibrium payoff.

Two related equilibrium concepts are the lim sup and the lim inf equilibrium
payoffs. We say that u = (ui(z))i∈N, z∈S ∈ RN×S is an asymptotic lim sup
ε-equilibrium payoff, respectively an asymptotic lim inf ε-equilibrium payoff,
of (Γδ)δ>0 if for every δ > 0 sufficiently small there is a strategy profile σδ,
such that for every player i ∈ N , strategy τ i of player i in Γδ, and state z,

−ε+ γ̄iδ(z, σ
−i
δ , τ

i) ≤ ui(z) ≤ γ̄iδ(z, σδ) + ε,

respectively
−ε+ γi

δ
(z, σ−iδ , τ

i) ≤ ui(z) ≤ γi
δ
(z, σδ) + ε.

The corresponding strategies σδ are 2ε-equilibrium strategies of Γδ with the
lim sup, respectively lim inf, payoff function.

We say that u = (ui(z))i∈N, z∈S ∈ RN×S is an asymptotic lim sup equilib-
rium payoff, respectively an asymptotic lim inf equilibrium payoff, if it is an
asymptotic lim sup ε-equilibrium payoff, respectively an asymptotic lim inf
ε-equilibrium payoff, for every ε > 0.

Remark 15 Obviously, an asymptotic limiting-average equilibrium payoff is
an asymptotic lim sup and an asymptotic lim inf equilibrium payoff. How-
ever, there are stochastic games with countably many states that have both an
asymptotic lim sup equilibrium payoff and an asymptotic lim inf equilibrium
payoff, such that, moreover, both payoffs coincide, but have no asymptotic
limiting-average equilibrium payoffs.
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Remark 16 It is unknown whether every stochastic game with finitely many
states and actions has a lim sup, respectively lim inf, equilibrium payoff. In
particular, it is unknown whether every stochastic game with finitely many
states and actions has a limiting-average equilibrium payoff.

Theorem 11 A family (Γδ = 〈gδ, pδ〉)δ>0 that converges strongly to Γ =
〈g, µ〉 has a limiting-average equilibrium payoff.

Proof. Let (Γδ)δ>0 be a family that converges strongly to Γ = 〈µ, g〉. Then
|giδ(z, a)−δgi(z, a)| = o(δ), and therefore | 1

nδ

∑
0≤m<n g

i
δ(zm, am)− 1

nδ

∑
0≤m<n δg

i(zm, am)| ≤
maxz,a |giδ(z, a)−δgi(z, a)|/δ = o(1) as δ → 0+. Therefore, it suffices to prove
the theorem for the special case where giδ = δgi. Note that in this special
case

1

nδ

∑
0≤m<n

giδ(zm, am) =
1

nδ

∑
0≤m<n

δgi(zm, am) =
1

n

∑
0≤m<n

gi(zm, am).

Therefore, ḡiδ and gi
δ
, as a function of the play z0, a0, . . ., are independent

of δ. Therefore we write ḡi and gi for short for ḡiδ and gi
δ
. Without loss of

generality we may assume that 0 ≤ gi ≤ 1.
By Remark 14, it suffices to prove that for every ε > 0 there is a vector

u ∈ RN×S that is an asymptotic limiting-average ε-equilibrium payoff.
Fix ε > 0 and let u and σ be, respectively, the uniform (and limiting-

average) ε/8-equilibrium payoff and the uniform (and limiting-average) ε/8-
equilibrium strategy of the continuous-time stochastic game Γ = 〈N,S,A, µ, g〉
that are constructed in [8]. In particular, for every state z ∈ S, player i ∈ N ,
and strategy τ i of player i, we have

ui(z) + ε/8 ≥ Ez
σḡ

i ≥ Ez
σg

i ≥ ui(z)− ε/8, (27)

where ḡi = lim sups→∞
1
s

∫ s
0
gi(zt, xt) dt and gi = lim infs→∞

1
s

∫ s
0
gi(zt, xt) dt,

and
Ez
σ−i,τ i ḡ

i ≤ ui(z) + ε/8. (28)

These inequalities follow from (u, σ) being a limiting-average ε/8-equilibrium
payoff and strategy profile. (An additional property that follows from the
special construction of σ in [8] is that ḡi = gi P z

σ a.e.)

Let v : S → RN be the limit of ρVρ as ρ→ 0+, where Vρ is the asymptotic
ρ-discounted minmax. Recall that Vρ is the unique solution of the following
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system of equalities:

ρV i(z) = min
x−i

max
yi

(
gi(z, x−i, yi) +

∑
z′∈S

µ(z′, z, x−i ⊗ yi)V i(z)

)
, ∀i ∈ N, z ∈ S.

As the strategy profile σ (that is constructed in [8]) is a discretimized strategy
(namely, there is a strictly increasing sequence of continuous times t0 = 0 <
t1 < t2 < . . ., such that t` →`→∞ ∞ and the mixed-action profile selected
by σ at time t` ≤ t < t`+1 is a function of the play up to time t` and the
state at time t), it follows that for every ε′ > 0 and for every player i there
is a strategy τ iε′ such that vi(z) − ε′ < Ez

σ−i,τ i
ε′
gi (≤ Ez

σ−i,τ i
ε′
ḡi). Therefore,

the inequalities ui(z) + ε/8 ≥ Ez
σ−i,τ i

ε′
ḡi ≥ vi(z) − ε′ hold for every ε′ > 0.

Therefore,
ui(z) ≥ vi(z)− ε/8. (29)

We will prove that u is an asymptotic limiting-average ε-equilibrium pay-
off of the family (Γδ)δ>0. The construction of the corresponding limiting-
average ε-equilibrium strategy profile σδ is analogous to the construction of
σ in [8]. The continuous-time pure-action strategy profiles τ̄ and τ̂ , which
are used in [8] in the definition of σ, will be adapted to the discrete-time pure
strategies τ̄δ and τδ respectively.

The continuous-time pure-action strategy profile τ̄ obeys the following
property. There is a sequence of continuous times T : 0 = t0 < t1 < . . . (with
tk →k→∞ ∞) such that for tk ≤ t < tk+1, τ̄(h, t) is a function of t, zt, and
the finite sequence of states −→z k = (zt0 , . . . , ztk). Therefore, for tk ≤ t < tk+1,
we can write τ̄(−→z k, zt, t) for τ̄(h, t).

The corresponding discrete-time pure strategy τ̄δ will be such that there
is a sequence of stages T δ : 0 = nδ,0 < . . . < nδ,k < . . . such that 1)
δnδ,k →δ→0+ tk, 2) for nδ,k ≤ m < nδ,k+1, τ̄δ(z0, a0, . . . , zm) is a function of
m, zm, and the finite sequence of states −→z δ

k = (znδ,0 , . . . , znδ,k); thus we can
write τ̄δ(

−→z δ
k, zm,m) for τ̄(z0, a0, . . . , zm), and 3) for fixed −→z k = −→z δ

k ∈ Sk+1,
the map [nδ,k, nδ,k+1) 3 m 7→ τ̄δ(

−→z δ
k, zm,m), which (given −→z δ

k) is a Markov
strategy on this interval of stages, converges w∗ to the (given −→z k) Markov
strategy [tk, tk+1) 3 t 7→ τ̄(−→z k, zt, t).

This relation between the continuous-time strategy τ̄ and the discrete-
time strategy τ̄δ implies, by inductive application of Proposition 2, that for
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every state z and every positive M ,

γiδ,M(z, τ̄δ) := Ez
τ̄δ

1

[M/δ]

∑
0≤m<[M/δ]

gi(zm, am)→δ→0+ γiM(z, τ̄),

where

γiM(z, τ̄) := Ez
τ̄

1

M

∫ M

0

gi(zt, xt) dt,

and [∗] stands for the largest integer that is less than or equal to ∗.
Definition of τ̄δ. We map the discrete-time sequence of states z0, z1, . . .

to a continuous-time (step-function) list of states: for any nonnegative real
t ≥ 0 we define zδ,t = z[t/δ]. Next, we define the profile of strategies τ̄δ in Γδ
by τ̄δ(z0, am, . . . , zm) = τ̄((zδ,t)t≤mδ).

Properties of τ̄δ. Recall the definition and properties of the positive
integer N0, the sufficiently small ε1 > 0, the disjoint subset of states, S1, S2,
and S̄, and the pure-action strategy profile τ̄ (that were constructed in [8]).
One of the properties of τ̄ is that for every z ∈ S1 and zs ∈ Cz := {z′ ∈
S | v(z′) = v(z)} for all s ≤ t, µ(S̄ ∪ (S \ Cz), zt, τ̄t) = 0. Therefore, by the
definition of τ̄δ we have

P z
τ̄δ

(zm ∈ Cz \ S̄) = 1 ∀z ∈ S1, m ≥ 0. (30)

The following inequality6 is proved in [8]. For z ∈ S1, for every player i,

γiN0
(z, τ̄) ≥ vi(z)− ε/7,

and therefore, for sufficiently small δ > 0,

γiδ,N0
(z, τ̄δ) ≥ vi(z)− ε/6. (31)

Definition of τδ. We define a stopping time mδ = mδ(z0, a0, z1, . . .) as
follows. On z0 ∈ S1, mδ = [N0/δ]; on z0 ∈ S̄, mδ = [1/δ]; on z0 = z ∈ S2,
mδ = min({m : m = [j/δ], j ∈ N, and zm /∈ Cz \ S̄}∪{[N0/δ]}). Define mk,δ,
k ≥ 0 inductively: m0,δ = 0 and mk+1,δ = mk,δ +mδ(zmk,δ , amk,δ , zmk,δ+1, . . .).

The strategy profile τδ is defined as follows.

τδ(z0, a0, . . . , zm) = τ̄δ(zmk,δ , zmk,δ , . . . , zm) if mk,δ ≤ m < mk+1,δ.

6The ε in [8] is ε/8 here, and ε1 there is sufficiently small.
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Properties of τδ. We define the sequence of states z̄δk, k ≥ 0, by z̄δk =
zmk,δ . Note that this definition is analogous to that of the sequence of states
z̄k, k ≥ 0, in [8]. Let F δ, respectively F , be the transition matrix of the
homogeneous Markov chain z̄δ0, z̄

δ
1, . . . with its P z

τδ
distribution, respectively

z̄0, z̄1, . . . with its P z
τ̂ distribution.

By the strong data convergence of 〈δg, pδ〉 to 〈g, µ〉, pδ(z′, z, a) > 0 if
and only if µ(z′, z, a) > 0. Therefore (for δ > 0 sufficiently small) F δ

z,z′ = 0
if and only if Fz,z′ = 0, and thus the ergodic classes of states of the two
homogeneous Markov chains, the one with transition matrix F δ and the
other with transition matrix F , coincide.

Let E denote the set of ergodic classes of states, and for E ∈ E we denote
by qEδ and qE the F δ and F invariant measures that are supported on E, and
qzδ (E) (respectively qz(E)) denotes the probability of the F δ-Markov chain
(respectively F -Markov chain) with initial state z entering the ergodic class
E. Recall that every ergodic class E ∈ E is a subset of S1, and on z0 ∈ S1

we have mδ = [N0/δ]. Therefore,

Ez
τδ
gi = Ez

τδ
ḡi =

∑
E∈E

qzδ (E)
∑
z∈E

qEδ (z)γiδ,N0
(z, τ̄δ).

Similarly,

Ez
τ̂ g

i = Ez
τ̂ ḡ

i =
∑
E∈E

qz(E)
∑
z∈E

qE(z)γiN0
(z, τ̄).

In addition, by Proposition 2 and the w∗ convergence of τ̄δ to τ̄ , F δ → F
as δ → 0+. Therefore, qzδ (E) →δ→0+ qz(E) and qEδ →δ→0+ qE. Since for all
z ∈ S, E ∈ E , and z′ ∈ E, we have

(qzδ (E), qEδ (z′), γiδ,N0
(z′, τ̄δ))→δ→0+ (qz(E), qE(z′), γiN0

(z′, τ̄)),

we deduce that
Ez
τδ
gi = Ez

τδ
ḡi →δ→0+ Ez

τ̂ ḡ
i = Ez

τ̂ g
i.

Therefore, for sufficiently small δ > 0 we have

ui(z)− ε ≤ Ez
τδ
gi = Ez

τδ
ḡi ≤ ui(z) + ε/6. (32)

Recall the definition of τ , ε1 and τ̃ in [8], where it is proved that for every
z ∈ S, every player i, and every stopping time T , Ez

τ v
i(zT ) ≥ vi(z) − ε1/2.
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Therefore, for every z ∈ S2,
∑

z′∈S Fz,z′v
i(z′) ≥ vi(z)− ε1/2. For z ∈ S1 ∪ S̄,∑

z′∈S Fz,z′v
i(z′) = vi(z). Therefore,∑

z′∈S

Fz,z′v
i(z′) ≥ vi(z)− ε1

2
1z∈S2∪S̄,

where 1∗ is the indicator function of ∗. In addition, if we replace the symbols
δ and ε in [8] with the symbol η and ε/8, it can be seen that for ε1 < ηd2 ε

32
,

Ez
σ

∞∑
k=0

1z̄k /∈S1 ≤
128

ηd2ε
,

and therefore for ε < 1 and ε1 < ηd2 ε2

8
1

128
(< ηd2 ε

32
),

ε1E
z
σ

∞∑
k=0

1z̄k /∈S1 < ηd2 ε
2

8

1

128

128

ηd2ε
= ε/8.

Therefore, for sufficiently small δ,

ε1E
z
τδ

∞∑
k=0

1z̄k /∈S1 < ε/6.

Assume that ε < 1 and ε1 < ηd2 ε2

8
1

128
.

Lemma 4 For sufficiently small δ > 0, for every stopping time T we have

Ez
τδ
viT ≤ Ez

τδ
vi∞ + ε/6, (33)

where vm = v(zm) and vi∞ = lim supm→∞ v
i
m (which equals limm→∞ v

i
m P z

τδ

a.e.), and

Ez
τδ

1T<∞v
i
T ≤ Ez

τδ
1T<∞v

i
∞ + ε/6 ≤ Ez

τδ
1T<∞ḡ

i + ε/3. (34)

Proof. The strategy τ defined in [8] obeys vi(zT ) ≤ Ez
τ (vi(zT ′) | HT ) + ε1/2

for all finite stopping times T ≤ T ′. Therefore, for all stopping times T ≤
T ′ ≤ N0, Ez

τ v
i(zT ) ≤ Ez

τ v
i(zT ′) + ε1/2, and Ez

τ̄ v
i(zT ) ≤ Ez

τ̄ v
i(zT ′) + 3ε1/4.

For z ∈ S1 we have, v(zm) = v(z) for all m ≤ mδ, P
z
τ̄δ

a.e. Therefore, for
sufficiently small δ > 0, for every stopping time T ≤ mδ (in the discrete-time
game), we have

Ez
τδ
viT = Ez

τ̄δ
viT ≤ Ez

τδ
vi(z̄δ1) + ε11z /∈S1 .
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Therefore, for δ > 0 sufficiently small, for every stopping time T ,

Ez
τδ
viT ≤ Ez

τδ
vi∞ + ε1E

z
τδ

∞∑
k=0

1z̄k /∈S1 ≤ Ez
τδ
vi∞ + ε/6.

This completes the proof of inequality (33).
Since 1T=∞vT = 1T=∞v∞ P z

τδ
a.e., we deduce that

Ez
τδ

1T<∞vT = Ez
τδ

1T<∞v∞ + ε/6. (35)

By inequality (31) we have vi∞ ≤ ḡi + ε/6, P z
τδ

a.e. Therefore,

Ez
τδ

1T<∞v
i
∞ ≤ Ez

τδ
1T<∞ḡ

i + ε/6,

which together with (35) implies (34). �

The punishing strategies. Recall that v : S → RN is the asymptotic
limiting-average minmax of the family (Γδ)δ>0. It follows that for every ε > 0,
z ∈ S, i ∈ N , and δ sufficiently small, there is a strategy profile σ−iδ,ε of players

N \ {i} such that for every strategy τ i of player i we have

γ̄iδ(z, σ
−i
δ,ε, τ

i) := Ez
δ,σ−iδ,ε,τ

i ḡ
i ≤ vi(z) + ε/3.

The limiting-average ε-equilibrium strategy σδ. The strategy pro-
file σδ follows the pure strategy profile τδ as long as the play coincides with
a play that is compatible with the strategy τδ, and reverts to punishing (in
the lim sup game Γδ) a deviating player. A formal definition of σδ follows.

Let kδ be the the first stage m with am 6= τδ(z0, a0, . . . , zm); kδ = ∞ if
am = τδ(z0, a0, . . . , zm) for every m ≥ 0. Fix an order of the player set N ,
and on kδ < ∞ let iδ be the minimal player i with aikδ 6= τ iδ(z0, a0, . . . , zkδ).
For every player i ∈ N ,

σ−iδ (z0, a0, . . . , zm) =

{
τ−iδ (z0, a0, . . . , zm) if kδ ≥ m

σ−iδ,ε(zkδ+1, akδ+1, . . . , zm) if kδ < m and i = iδ.

To complete the definition of the strategy profile σδ, there is a need to define
σiδ(z0, a0, . . . , zm) on kδ < m and i = iδ. However, this has no impact on the
reasoning that follows. We therefore define it arbitrarily.

Let τ i be a pure strategy of player i. Note that (σ−iδ , τ
i) is a pure strat-

egy profile. Let nδ be the stopping time of the first stage m such that
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τ i(z0, a0, . . . , zm) 6= τ iδ(z0, a0, . . . , zm). Note that for every state z, with
P z
τ−iδ ,τ i

-probability 1, kδ = nδ, and iδ = i on kδ < ∞. Let Hnδ be the

σ-algebra generated by all (zm)m≤nδ and (am)m<nδ .

γ̄i(z, σ−iδ , τ
i) = Ez

σ−iδ ,τ i
ḡi (36)

= Ez
σ−iδ ,τ i

Ez
σ−iδ ,τ i

(ḡi | Hnδ) (37)

= Ez
σ−iδ ,τ i

(1nδ=∞ + 1nδ<∞)Ez
σ−iδ ,τ i

(ḡi | Hnδ) (38)

= Ez
σδ

1nδ=∞ ḡ
i + Ez

σ−iδ ,τ i
1nδ<∞E

z
σ−iδ ,τ i

(ḡi | Hnδ) (39)

≤ Ez
σδ

1nδ=∞ ḡ
i + Ez

σ−iδ ,τ i
1nδ<∞ v

i(znδ+1) + ε/3 (40)

≤ Ez
σδ

1nδ=∞ ḡ
i + Ez

σ−iδ ,τ i
1nδ<∞ v

i(znδ) + ε/2 (41)

≤ Ez
σδ
ḡi + 5ε/6 (42)

≤ ui(z) + ε. (43)

Equality (36) follows from the definition of γ̄i(z, σ−iδ , τ
i). Equality (37)

follows from one of the basic properties of conditional expectation: that the
expectation equals the expectation of the conditional expectation. Equality
(38) follows from the rewriting of the constant function 1 as the sum of the
two {0, 1}-valued functions 1nδ=∞ and 1nδ<∞. Equality (39) follows from the
facts that 1) the expectation is additive, 2) 1nδ=∞ is measurable with respect
to σ-algebra Hnδ and therefore Ez

σ−iδ ,τ i
1nδ=∞ ḡ

i = Ez
σ−iδ ,τ i

1nδ=∞E
z
σ−iδ ,τ i

(ḡi |
Hnδ), and 3) the P z

σδ
-distribution and the P z

σ−iδ ,τ i
-distribution of 1nδ=∞ḡ

i co-

incide. Inequality (40) follows from the definitions of σ−iδ and σ−iδ,ε. Inequality
(41) follows from the fact that for sufficiently small δ > 0, for every strategy
σ and stopping time T , Ez

σ1T<∞v
i(zT+1) ≤ Ez

σ1T<∞v
i(zT ) + ε/6. Inequality

(42) follows from Lemma 4, which asserts that for every stopping time T ,
Ez
σδ

1T<∞ v
i(zT ) ≤ Ez

σδ
1T<∞ ḡ

i + ε/3. Inequality (43) follows from inequality
(32) which asserts that Ez

σδ
ḡi ≤ ui(z) + ε/6.

By (32), Ez
σδ
gi ≥ ui(z) − ε, which together with the equality γi(z, σδ) =

Ez
σδ
gi implies that γi(z, σδ) ≥ ui(z)−ε. We conclude that (u, σδ) is a limiting-

average ε-equilibrium payoff and strategy, and therefore u is an asymptotic
limiting-average equilibrium payoff. �

Theorem 12 An exact family (Γδ)δ>0 has an asymptotic uniform equilib-
rium payoff.
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Proof. First, recall that an exact family has an asymptotic uniform minmax.
The uniform ε-equilibrium strategy σδ follows the pure strategy profile τδ
(defined in the proof of the previous theorem), and reverts to punishing a
deviating player (in the uniform game). �

Theorem 13 An exact family (Γδ)δ>0 has an asymptotic −→w -robust equilib-
rium payoff whenever −→w = (wi)i∈N is a vector of nonstationary discounting
measures on [0,∞].

Proof. For β = (βi)i∈N ∈ RN
+ we denote by β ∗−→w the vector (βiwi)i∈N . Note

that if βi > 0 for every i ∈ N , then the family (Γδ)δ>0 has an asymptotic
−→w -robust equilibrium payoff if and only if it has an asymptotic β ∗−→w -robust
equilibrium payoff. Therefore we may assume that wi(∞) = 1.

Fix ε > 0 and an asymptotic 1∞-robust equilibrium payoff ν ∈ RN×S of
the exact family (Γδ)δ>0. Let 0 < t < ∞ be such that wi([t,∞)) < ε/‖g‖
for every i ∈ N , and let mδ = [t/δ] and νδ = ν. Then, (mδ, νδ) converges
to (t, ν). Let v ∈ RN×S be an asymptotic (−→w t, t, ν) equilibrium payoff of
the family (Γδ)δ>0, where −→w t is the restriction of −→w to the interval [0, t). If
−→w δ converges (as δ goes to zero) to −→w , then −→w t,δ – the restriction of −→w δ to
{0, 1, 2, . . . ,mδ} – converges to −→w t.

If σδ is the strategy profile that follows up to stage mδ an ε-equilibrium
strategy profile in Γmδ,ν

δ,−→w t,δ
with a payoff within ε of v, and thereafter a 1∞-

robust ε-equilibrium with a payoff within ε of ν, then for every player i and
all strategies τ iδ (δ > 0) of player i in Γδ,

6ε+ lim inf
δ→0+

Ez
σδ
giδ(w

i
δ) ≥ vi(z) ≥ −6ε+ lim sup

δ→0+
Ez
σδ,τ

i
δ
giδ(w

i
δ).

Therefore, the exact family (Γδ)δ>0 has an asymptotic −→w -robust equilibrium
payoff. �

References

[1] Bewley, T. and E. Kohlberg (1976), The asymptotic theory of stochastic
games, Mathematics of Operations Research, 1, 197–208.

[2] Guo, X. and O. Hernandez-Lerma (2005), Nonzero-sum games for
continuous-time Markov chains with unbounded discounted payoffs,
Journal of Applied Probability, 42, 303–320.

59



[3] Jasso-Fuentes, H. (2005), Noncooperative continuous-time Markov
games, Morfismos, 9, 39–54.

[4] Levy, Y. (2012), Continuous-time stochastic games of fixed duration,
DP 617, Center for the Study of Rationality, Hebrew University of
Jerusalem.

[5] Mertens, J.-F. and A. Neyman (1981), Stochastic games, International
Journal of Game Theory, 10, 53–66.

[6] Neyman, A. (2003), Real algebraic tools in stochastic games, in Stochas-
tic Games and Applications, A. Neyman and S. Sorin (eds.), NATO ASI
Series, Kluwer Academic Publishers, pp. 57–75.

[7] Neyman, A. (2003), Stochastic games: Existence of the minmax, in
Stochastic Games and Applications, A. Neyman and S. Sorin (eds.),
NATO ASI Series, Kluwer Academic Publishers, pp. 173–193.

[8] Neyman, A. (2012), Continuous-time stochastic games, DP 616, Center
for the Study of Rationality, Hebrew University of Jerusalem.

[9] Shapley, L. S. (1953), Stochastic games, Proceedings of the National
Academy of Sciences of the U.S.A., 39, 1095–1100.

[10] Solan, E. (2003), Continuity of the value of competitive Markov decision
processes, Journal of Theoretical Probability, 16, 831–845.

[11] Solan, E. and N. Vieille (2002), Correlated equilibrium in stochastic
games, Games and Economic Behavior, 38, 362–399.

[12] Solan, E. and R. Vohra (2002), Correlated equilibrium and public sig-
nalling in absorbing games, International Journal of Game Theory, 31,
91–121.

[13] Vigeral, G. (2012), A zero-sum stochastic game with compact action
sets and no asymptotic value, CEREMADE, Universite Paris-Dauphine,
preprint.

[14] Zachrisson, L. E. (1964), Markov games, in Advances in Game Theory,
Princeton: Princeton University Press.

60


