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Abraham Neyman*
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Abstract

We introduce asymptotic analysis of stochastic games with short-
stage duration. The play of stage k, k > 0, of a stochastic game I';s
with stage duration § is interpreted as the play in time k§ < t <
(k+1)d, and therefore the average payoff of the n-stage play per unit
of time is the sum of the payoffs in the first n stages divided by nd,
and the A\-discounted present value of a payoff ¢ in stage k is \*g. We
define convergence, strong convergence, and exact convergence of the
data of a family (I's)s~o as the stage duration 0 goes to 0, and study
the asymptotic behavior of the value, optimal strategies, and equilib-
rium. The asymptotic analogs of the discounted, limiting-average,
and uniform equilibrium payoffs are defined. Convergence implies
the existence of an asymptotic discounted equilibrium payoff, strong
convergence implies the existence of an asymptotic limiting-average
equilibrium payoff, and exact convergence implies the existence of an
asymptotic uniform equilibrium payoff.

1 Introduction

Most strategic interactions evolve over time, and are often modeled as a
discrete-time multi-stage game. The discrete-time modeling enables us to
use the classic theory of extensive form games, which entails no conceptual
difficulties. This however comes at implicit costs: players cannot change
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their actions within a stage and additional information about others’ actions
and nature’s moves is obtained only at a discrete set of times. An alternative
modeling of dynamic interactions is continuous-time games, which avoids the
above-mentioned costs, but entails some conceptual difficulties.

The present paper develops a complementary approach that studies the
asymptotic behavior of multi-stage games when the stage duration goes to
zero. We focus on the theory of stochastic games.

A discrete-time stochastic game, introduced by Shapley (1953), proceeds
in stages. The stage payoff is a function g(z,a) of the stage state z and the
stage action a, and the transitions to the next state 2z’ are defined by condi-
tional probabilities P(2’| z,a) of the next state z’ given the present state z
and the stage action a. Players’ stage-action choices are made simultaneously
and are observed by all players following the stage play.

Discrete-time stochastic games are multi-stage game-theoretic models
that enable us to account for changes of states between different stages of
the interaction, and where the change is impacted by the players’ actions.
However, no single discrete-time stochastic game can model the case where
the probability of a state change in any short time interval can be positive yet
arbitrarily small. This feature can be analyzed by studying continuous-time
stochastic games, introduced in [14], and studied in, e.g., [14, 2, 3, 4, 8]. An
alternative and complementary approach is to study the asymptotic behavior
of discrete-time stochastic games, where the individual stage represents short
time intervals that converge to zero and the transition probabilities to a new
state also converge to zero.

The continuous-time stochastic game model provides us with a tractable
analytic model (whose results are neatly stated), but, as mentioned earlier,
the model entails some conceptual difficulties. The complementary asymp-
totic approach builds on the classic discrete-time (well-defined) game model,
and therefore avoids the conceptual issues of continuous-time games. The
results of the asymptotic approach supplement and cement the conclusions
of the analytic continuous-time model.

We consider a family of discrete-time stochastic games I'y, where the
positive parameter ¢ > 0 represents the stage duration. The sets of players
N, states S, and actions A are independent of the parameter §, and the
conditional transition probabilities Ps and the payoff function g5 depend on
the parameter . We study the asymptotic behavior of the strategic analysis
of I's as § goes to zero.

The payoff function gs describes the stage payoff in I's. As the stage



duration is d the stage payoff per unit of time is gs/J. One natural condition,
(g.1), on the family of discrete-time stochastic games I's is that the stage
payoff function per unit of time is a function of the current state and action,
and independent of §, i.e., gs/d = g, where g : S x A — RY. A less restrictive
condition, (g.2), is that the stage payoff function per unit of time converges
(as § goes to zero) to a payoff function g : S x A — RY. In the asymptotic
results, the distinction between assumptions (g.1) and (g.2) is immaterial.

The transition rates, ps, are the functions defined on S x S x A by
ps(2,z,a) = Ps(2' | z,a) if 2/ # z and ps(2/,2,a) = Ps(2' | z,a) — 1 if
2/ = z. The transition rate ps(z’, z, a) represents the difference between the
probability that the next state will be 2z’ and the probability (0 or 1) that the
current state is 2z’ when the current state is z and the current action profile
is a. Note that it follows that for every (z,a) the sum of ps(Z, z,a) over
all states 2’ is zero and ps(2/, z, a) is nonnegative whenever 2z’ and z are two
distinct states. It is convenient to express our conditions on the conditional
transition probabilities Py as conditions on the transition rates ps.

There are several natural conditions on the transition rates function ps,
each reflecting a dependence of ps on the stage duration parameter 6. One
such condition, (p.1), is that the transition rates per unit of time is constant,
i.e., for each § > 0, ps/d = p, where p : S xS x A — R. A weaker
asymptotic condition, (p.2), called convergence, is that the equality with p
holds in the limit, i.e., for all triples (2/, z, a) of states 2/, z and action profile
a, ps(z', z,a) /0 converges (as d goes to zero) to a limit u(2’, z,a). Condition
(p.3), called strong convergence, requires that condition (p.2) hold and that
ps(2',z,a) > 0if and only if (2, z,a) > 0. Condition (p.1) implies condition
(p.3) and condition (p.3) implies condition (p.2).

An exact family of discrete-time stochastic games I's is one that obeys
(g.1) and (p.1). A family of discrete-time stochastic games I's is said to
converge in data if it obeys (g.2) and (p.2), and it is said to converge strongly
if it obeys (g.2) and (p.3).

The above-mentioned convergence conditions on a family (I's)sso are
stated as conditions on the data of the games in the family. The data con-
vergence condition seems natural, and therefore the study of the asymptotic
behavior of equilibria of a data-convergent family is of interest. However,
one may wonder if the strategic dynamics of some other families of games
that do not converge in data have a limit, and therefore such families deserve
an asymptotic analysis as well. This leads us to the study of convergence
conditions on a family (I's)s-o that depend on the stochastic processes of
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payoffs and states that are defined by the initial state and a strategy profile
o, in particular, when the strategy profile ¢ is stationary. This leads to our
definition of stationary convergence. Roughly speaking, stationary conver-
gence states that for every stationary strategy profile o and real time ¢, both
the cumulative payoff (in T's) up to time ¢ and the distribution of the state
at time ¢ converge as the stage duration ¢ goes to zero.

Proposition 1 asserts that stationary convergence is equivalent to data
convergence. This result shows that the continuous-time model (see, e.g.,
[8]) captures all possible limits of “nicely behaved” families of discrete-time
stochastic games with short-stage duration.

Data (or its equivalent stationary) convergence is sufficient for our asymp-
totic results (e.g., Theorem 1 and Theorem 8) on the stationary (as well as
the nonstationary) discounted games. In these results we associate with a
discount rate p and a stage duration 0 the discount factor 1 — pd. These
results remain intact if the (4, p)-dependent discount factor \s, is such that
the limit, as § goes to zero, of (1 — \;,)/d exists and equals p. For example,
)\5”0 =e” J,

The unnormalized p-discounted payoff of a play (2, ag, 21, . . .) of the game
[sis >0 (1 — pd)"gs(2m, am). The corresponding p-discounted game is
denoted by I's,. In the two-person zero-sum case, Section 4.1 shows that,
given a converging family (I's)s=o of two-person zero-sum games, 1) the value
of I's ,, denoted by Vj ,, converges as § goes to zero, and 2) there is a stationary
strategy o that is £(0)-optimal in the game I's,), where (0 goes to zero as §
goes to zero.

An asymptotic p-discounted stationary equilibrium strategy of the family
(T's)s>0 of non-zero-sum stochastic games is a profile o of stationary strategies
that is an €(0)-equilibrium of I's, where €(6) — 0 as d goes to zero. In the
discounted non-zero-sum case, we prove (Theorem 8) that (for every p > 0)
a converging family has an asymptotic p-discounted stationary equilibrium
strategy.

The average (per unit of time) payoff to player ¢ up to time s (in the
game Ts) is gi(s) = %20§m<s/5 9%(2m, @), Where g§ is the i-th coordinate
of gs. The liminf, respectively lim sup, game I's is the game where the payoff
to player i is ﬂfs := liminfy_, gi(s), respectively gi := limsup,_, . g5(s). The
limiting-average value or equilibrium payoff is a payoff v such that for every
e > 0, there is a strategy profile such that 1) for every player 4, his payoff in
the lim inf game is at least v* — &, and 2) every unilateral deviation of player
i results in a payoff to him in the lim sup game of no more than v’ + €.
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For every § > 0, vs, := pV;, converges to a limit (denoted by vs) as
p — 0+ [1]. The limit vs is the uniform and limiting-average value of I's [5].
Convergence in data is not sufficient to guarantee the convergence of vs as
d goes to zero (Remark 10). Strong convergence implies that vs, converges
as 0 goes to zero uniformly in p (Theorem 2), and therefore vs converges as
d goes to zero.

A family (I's)so of two-person zero-sum stochastic games has an asymp-
totic limiting-average value v if for every € > 0 there are strategies o; of player
1 and 75 of player 2 and a duration dy > 0, such that for every 0 < § < dy,
strategy o of player 1, and strategy 7 of player 2, ¢ + EZ 95 = v(z) >
—&+ E5 5,95

A family (I's)s>0 of non-zero-sum stochastic games has an asymptotic
limiting-average equilibrium payoff v if for every € > 0 there are strategy
profiles o5 and a duration dy > 0, such that for every 0 < § < dg, player ¢,
and strategy 7 of player 1,

€+ Eiagfs >v'(z) > —e+ Ejgiﬁigf;(s).

A family (I's)s-o that converges strongly has an asymptotic limiting-
average value in the zero-sum case (Theorem 4), and an asymptotic limiting-
average equilibrium payoff in the non-zero-sum case (Theorem 11).

A family (I's)so of two-person zero-sum stochastic games has an asymp-
totic uniform value v if for every € > 0 there are strategies os of player 1
and 75 of player 2, a duration dy > 0, and a time sy > 0, such that for
every 0 < 0 < dy, s > sg, strategy o of player 1, and strategy 7 of player 2,
S B2, gs(s) 2 v(2) > —e + B2, g5(5)

A family (I's)s>0 of non-zero-sum stochastic games has an asymptotic
uniform equilibrium payoff v if for every € > 0 there are strategy profiles oy,
a duration 9y > 0, and a time sy > 0, such that for every 0 < d < dg, s > S,
player i, and strategy 7° of player 1,

e+ E7,05(s) 2 v'(2) = —e + B} igi(s).

An exact family of games I's has an asymptotic uniform value in the zero-
sum case (Theorem 6), and an asymptotic uniform equilibrium payoff in the
non-zero-sum case (Theorem 12).



2 The model and results

Throughout the paper, the set of players N, the set of states S, and the set
of actions A, are finite. The set of feasible actions may depend on the state
z € S. We denote by A’(z) the set of actions of player i € N in state z € S.
A(z) is the set of action profiles at state z, A(z) = X;enA'(z). For notational
convenience we set A = {(z,a) : z € S, a € A(2)}.

The data of the stochastic game I's that depend on the parameter § are
the R¥-valued payoff function gs that is defined on A and the conditional
probabilities Ps(z" | z,a) that are defined for all 2’ € S and (z,a) € A. The
payoff function gs defines the stage payoff gs(2,a) € RY as a function of the
stage state z and the stage action profile a. The i-th coordinate of a vector
g € RY is denoted by ¢°. The conditional probabilities Ps(z' | z,a) specify
the conditional probability of the next state being z’ conditional on playing
the action profile a at the current state z.

The conditional probabilities Ps(z’ | z,a) obey Ps(z | z,a) > 0 and
Y ves Ps(2 | z,a) = 1. We describe the conditional probabilities by specify-
ing the function ps(2’, z, a) that is defined on S x A by ps(Z’, z,a) = Ps(2' |
z,a) if 2/ # z and ps(2,z,a) = Ps(2' | z,a) — 1 if 2/ = z. Obviously,
ps(2,z,a) > 0if 2 # 2z, p(2,2,a) > =1, and ), o ps(2, 2,a) = 0.

The set H of plays of I's is the set of all sequences h = (zo, ag, . - - , 2k, Gk, - - -)
with (z,ax) € A. The events are the elements of the minimal o-algebra H
of subsets of H for which each one of the maps H > h = (20,0a0,...) —
(zr,ax) € A, k > 0, is measurable. We denote by Hj the o-algebra gener-
ated by (zo, ag, - - -, 2k)-

The set of strategies in the stochastic game I's is independent of 4. The
transition probabilities, however, do depend on §. For every strategy profile
o = (0')ieny we denote by Pj, the probability distribution defined by the
transition probabilities of the game I's, the initial state zgp = z, and the
strategy profile o, on the measurable space (H,H) of plays. The expectation
with respect to the probability P, is denoted by Ej,. The parameter 4 that
appears in the probability and expectation above is formally needed as the
transition probabilities depend on 6. However, wherever there is an implicit
reference to the parameter §, we suppress (the formally needed) 6. E.g., we
write E; , for short, instead of the more explicit Ef .



2.1 The discounted games

Given a discount factor 0 < A < 1, the discrete-time stochastic game I'
with a discount factor A is the game where the (unnormalized) valuation of
the stream of payoffs (¢, = g(2m, @m))m>0 18 Y _o_g A™gm. The normalized
valuation is the unnormalized one times 1 — A. The generalization to the case
of individual discount factors is straightforward. Given a vector Y = (N)ien

of discount factors the game with discount factors Y is the game where the
unnormalized (respectively, normalized) valuation of player ¢ of the stream
of vector payoffs (gm)m>0 18 Y g ATgL, (respectively, (1—X;) > Agl ).

We study the family of discrete-time stochastic games I's with discount
factors As that depend on the stage duration parameter §. We require that
the limit, as 0 goes to zero, of the valuation of a unit payoff per unit of
time (i.e., g5 = 0 for all 6 > 0) with the discount factor As, exist. This
requirement is equivalent to the existence of the limit of % as 0 goes to
zero. A family of d-dependent discount factors \s is called admissible if

1-A

lims 04 —5* exists. The limit is called the asymptotic discount rate (and is
equal to limg_ o4 _hg A5 ). Two examples of admissible d-dependent discount
factors, with asymptotic discount rate p > 0, are A\s = ¢~ and \s = 1 — pd.

A family of d-dependent discount factors, As, is admissible and has an
asymptotic discount rate p > 0, if and only if for all streams x5 = (95,0, gs5.1, - - -)
of payoffs, with uniformly bounded payoffs per unit of time (i.e., |gs.n| < C9),
the difference between the valuation of xs according to the discount factors
\s and its valuation according to the discount factors e ”° goes to zero as &
goes to zero.

Our asymptotic results on the d-dependent discounted games depend only
on the asymptotic discount rate p (and not on the exact choice of the J-
dependent discount factor with asymptotic discount rate p). Therefore, it
suffices to select, for each p > 0, an admissible family of d-dependent dis-
count factors As;, with asymptotic discount rate p. Our choice of the ¢-
dependent discount factor with asymptotic discount rate p is A5, = 1 — po.
This simplifies some parts of the presentation.

The p-discounted game, denoted by I's,, is the game I's with discount
factor 1 — pd. In the zero-sum case, we say that the family (I's)s=o of two-
person zero-sum games' has an asymptotic p-discounted value V,, if the values

'Henceforth, whenever we discuss a value concept of a family (I's), we will omit the
statement of the implicit condition that it is a family of two-person zero-sum games.



of I's ,, denoted by V; ,, converge to V, as ¢ goes to zero. Theorem 1 asserts
that a family (I's)s>o that converges in data has an asymptotic p-discounted
value. In addition, it provides a system of S equations that has a unique
solution, which equals V,, and proves the existence of a (0-independent)
stationary strategy that is e(d)-optimal in I's,, where £(6) — 0 as d goes
to zero. In the non-zero-sum case, Theorem 8 asserts that a family (I's)s~o
that converges in data has a (J-independent) stationary strategy that is an
£(0)-equilibrium of I's ,, where ¢(6) — 0 as § goes to zero.

Section 4.1 notes that the map p — V), is semialgebraic and bounded, and
therefore v, := pV, = Y20, cx(2)p"M in a right neighborhood of zero. This
fact, in conjunction with the covariance properties of v, as a function of (g, 1)
(see Section 4.1), is used in the study of the asymptotic uniform value (see
Section 4.5). It shows that for an exact family (I's)s=o there is an integrable
function ¢ : [0,1] — R4 and dp > 0 such that ||pVs, — p'Vs || < fppl Y(x) de
for0 <p<p <1andd < dp.

The covariance properties (in conjunction with [10, Theorem 6]) are used
in the proof of Theorem 2 that asserts that if I's converges strongly, then vs,
(:= pVjs,) converges, as 0 goes to zero, uniformly on 0 < p < 1.

2.2 The nonstationary discounted games

A time-separable valuation u of streams of payoff is represented by a pos-
itive measure w on the nonnegative integers. It is given by the valuation
function w,(go, g1,--.) = Yo W(M)Gm. The valuation function w,, is (well)
defined over all bounded streams (go, g1, - - .) of payoffs. The valuation w,, is
normalized if the total mass of w equals 1, i.e., Y °_ w(m) = 1. The general-
ization to the case of individual time-separable valuations is straightforward.
Given a vector @ = (w);en of positive measures on the nonnegative integers
the game with valuation u; is the game where the valuation of player i of
the stream of vector payoffs (¢m)m>o0 18 Yo o w'(m)g.,. The discrete-time
stochastic game I' with the valuation uy is denoted by I'.

The set of all probability measures on a set * is denoted by A(x). As A’(z)
is finite, the set X'(z) := A(A%(2)) is a compact subset of a Euclidean space.
The set of profiles of Markovian strategies in a discrete-time stochastic game
is identified with the cartesian product X (; . njenxsxnX"(2), which is a com-
pact space in the product topology. Let I' be a discrete-time stochastic game
(with finitely many states and actions). A profile o of Markovian strategies is



an equilibrium of I'z whenever: 1) for every £ € N, W}, is a vector of positive
measures on the nonnegative integers, 2) for every k € N, (k) is a profile of
Markovian strategies that is an equilibrium of I'z, , 3) 0(k) =400 0 (in the
product topology), and 4) for every i € N, > °_ |wj.(m) — w'(m)| —k—00 0.

By backward induction, if W has finite support, the game 'y has an equi-
librium in Markovian strategies. Therefore, the above-mentioned comment
implies that a discrete-time stochastic game with individual time-separable
evaluations has an equilibrium in Markovian strategies. The discrete-time
stochastic game I'y; with the individual time-separable valuation W(; is de-
noted by I'sz,. In this game, the payoff to player i of a play (zo,ao,...)
is gh(ws) == >0 wi(m)gs(zm, am). The discrete-time stochastic game I's
with the common time-separable valuation ws, denoted by I's ., is the game
D5, with w}j = ws for every player 1.

If W = (w);en is a profile of nonnegative measures on [0, o], we say that
the vector Wy = (w});en of N measures on NU{co} converges (as § — 04) to
W if 1) W s(NU{oo}) converges (as & goes to 0) to @ ([0, c0]), and 2) for every
0 <t < oo there is a family of nonnegative integers mgs with dms —s_04 t,
and such that 3™ Ws(m) =50+ @([0,1]). Note that by identifying the
N-vector measure @ 5 with the N-vector measure @ on [0, co] (the one-point
compactification of [0,00)) that is supported on {ém : m > 0} U {occ} and
satisfies w5([0m, d(m + 1))) = wWs(m) and ws(o0) = Ws(c0), our definition
of convergence here is equivalent to w* convergence of measures on compact
spaces. Explicitly, W converges as 0 — 04 to the N-vector measure w
on [0,00] if for every continuous function f on [0, 0o, f[o,oo] fla) dw(x)
(which equals f(oo)ﬁg(oo) +> 0 f(ém)ﬁg(ém)) converges as 0 — 0+ to
foy £ (@) 0 ().

In this section we focus on the case that oy is supported on N and w
is supported on [0,00). The more general convergence definition (above) is
used in subsequent parts of the paper.

Of special interest are the nonstationary discounting valuations and their
limits. In the discrete-time model, the nonnegative measure w on NU{oo} is
called a nonstationary discounting valuation (measure) if w(m) > w(m+1).
The vector measure o is said to be nonstationary discounting if each of its
components w' is a nonstationary discounting. A nonnegative measure w on
0, 0¢] is said to be nonstationary discounting if for every s > 0 the function
[0,00) 3 t — w([t,t + s) is nonincreasing in ¢. Note that if the family of
nonstationary discounting measures ws on N converges to the nonnegative



measure w on [0, 00|, then w is a nonstationary discounting measure.

Let @ be a nonstationary discounting N-vector measure on [0, 00). We
say that v € RY*9 is an asymptotic W equilibrium payoff of the family of
N-person games (I's)s=o, if for every ¢ > 0 and a family of nonstationary
discounting N-vector measures Ws on N that converges to W, vis an e-
equilibrium payoff of I's 3, for every ¢ > 0 sufficiently small.

Let w be a nonstationary discounting measure on [0,00). We say that
v € R® is an asymptotic w value of the family of two-person zero-sum games
(I's)s>0, if for every e > 0 and a family of nonstationary discounting measures
ws on N that converges to w, the value vs of ', satisfies |vs(z)—v(z)| < € for
every 6 > 0 sufficiently small and state z. Note that v € R® is an asymptotic
w value of the family of two-person zero-sum games (I's)s~o if and only if
(v, —v) is an asymptotic (w,w) equilibrium payoff of (I's)s=o.

Theorem 9 asserts (in particular) that if (I's)s~o converges in data, then
for every nonstationary discounting N-vector measure @ on [0, 00) the family
(I's)s>0 has an asymptotic o equilibrium payoff. In addition, if the nonsta-
tionary discounting N-vector measure w4 converges (as 0 goes to 0) to the
N-vector measure W on [0,00), then for every ¢ > 0 there is §o > 0 and
a family of Markovian strategy profiles o5, such that 1) for 0 < § < &y,
05 is an e-equilibrium of I's 3, and its corresponding payoff is within ¢ of
an asymptotic w equilibrium payoff v, and 2) o5 converges to a profile of
continuous-time Markov strategies?. In Section 3.2 we define the convergence
of Markovian strategies.

Theorem 9 implies in particular that a finite-horizon continuous-time
stochastic game has an e-equilibrium in Markov strategies. [4] shows that a
finite-horizon continuous-time stochastic game need not have an equilibrium
in Markov strategies. Therefore, it is impossible to require (in the additional
part) that o5 be an equilibrium (rather than an e-equilibrium) of I'; 7, and
at the same time converge to a profile of continuous-time Markov strategies.

In several dynamic interactions, the game payoff is composed of stage pay-
offs and a terminal payoff. Such games are also useful in backward induction
arguments. For example, in order to find an equilibrium (or an approximate
equilibrium) of an extensive form game, a classical procedure is to replace a
subgame of the game with a terminal node whose payoff equals an equilibrium
(or approximate equilibrium) payoff of the subgame. An equilibrium (or ap-

2A continuous-time strategy o is a mixed-action-valued measurable function defined on
S x R.
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proximate equilibrium) of the original game is obtained by patching together
an equilibrium (or an approximate equilibrium) of the truncated game with
an equilibrium (or approximate equilibrium) of the subgame. This motivates
the definition of the following useful family of games.

Let Ws = (w})ien be a vector of positive measures on N, ms > 0, and let
vs = (Vi)ien be a vector of N payoff functions v} : A — R. The game FZL%Z‘S
is the game I's where the valuation of player ¢ of the play (2o, ag, 21,...) is
the sum of two terms: v}(2pmy, Gm;) + D oo W (M) gi(Zm, am). The first term
accounts for a one-time (e.g., terminal) payoff. This variation enables us to
view games like soccer, where the objective is to reach the best score at the
end of the game, as stochastic games.

We say that (ms,vs) converges to (t,v), where 0 <t < oo and v: A —
RY if 1) v5(2, a) converges to v(z,a) for all (z,a) € A, and 2) dms converges
to t as d goes to zero.

Let @ be a nonstationary discounting N-vector measure on [0,00), 0 <
t <oo,and v: A — RN. The N x S payoff vector v € RV*¥ is called an
asymptotic (W,t, v) equilibrium payoff of the family (I's)s=o, if for every 1)
family of nonstationary discounting N-vector measure Ws on N that con-
verges (as 6 goes to 0) to W, 2) ms € N and v : A — RY such that (ms, v5)
converges to (¢,v), and 3) € > 0, there is §y > 0, such that for 0 < 0 < dy,
Fg’%il;‘; has an e-equilibrium payoff within € of v.

Theorem 9 asserts if 1) W is a nonstationary discounting N-vector mea-
sure on [0,00), 2) 0 < ¢ < oo, and 3) v : A — RY, then a family (T's)s=o
that converges in data has an asymptotic (ﬁ, t,v) equilibrium payoff. In ad-
dition, if 1) Wy is a nonstationary discounting N-vector measure on N that
converges (as 0 goes to 0) to W, and 2) ms € N and vs : A — RN are such
that (ms,vs) converges to (t,v), then for every € > 0 there are 1) §y > 0,
2) Markov strategy profiles o5, and 3) a continuous-time Markov strategy

ms,Vs

profile o, such that 1) for 0 < § < dg, 05 is a e-equilibrium of I'} o, with a
payoff within ¢ of an asymptotic (ﬁ,t, v) equilibrium payoff v, and 2) the
Markov strategy profiles o5 converge w* to o.

2.3 The limiting-average games

The classic limiting-average valuation of a stream (go, g1,...) of payoffs is
the limit of the average payoff per stage, lim,, . % Y 0<men 9m, if the limit
exists. The interpretation is that the stage duration is one unit of time, and
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therefore the average %Zogm <n 9m represents the average payoff per unit
of time. In studying the limiting-average valuation of streams (gs0, gs1, - - -)
of payoffs in I's, one has to take into account that the stage duration is 9.
Therefore the average payoff per unit of time up to time s is (g5(s) )ieny = g5(s)
(= 13" 0<ms<s 96,m)- In the two-person zero-sum case, the set of players is
N = {1,2} and we write g for g* and gs for g}. No confusion should result.

The averages gi(s) need not converge as s goes to infinity. Therefore,
in defining the limiting-average (value or) equilibrium payoff v = (v');en,
we require that for every e > 0 the (s-optimal or) e-equilibrium strategy
result in a distribution on streams of payoffs such that the expectation of
gfs (= liminfs o4 gi(s)) is within € of v, and no unilateral deviation by a
player, say player ¢, can result in a distribution on streams of payoffs with
an expectation of gi (= limsup gi(s)) greater than v’ + ¢.

Note that if ws ¢ is the probability measure on N with wss(m) = 1/[s/d]
(where [*] denotes the smallest positive integer that is > *) if md < s
and wss(m) = 0 otherwise, then gi(s) = gi(wss). For each § > 0, the
probability measures ws, s > 0, are the extreme points of the convex set
M}(N) of nonstationary discounting probability measures ws on N. Indeed,
ws =Yy (ws(m — 1) — ws(m))mawsms and 37 (ws(m — 1) — ws(m))m =
LoAs S (ws(m — 1) — ws(m))m < ws(0)k® —uy0)504 0, we deduce
the following (known) property of the liminf valuation Qf; and the lim sup
valuation g.

gg = lim inf{gi(ws) : ws € M}(N) with ws(0) < n}, and
= n—0+
gs = nl—i>%1+ sup{gi(ws) : ws € M;(N) with ws(0) < n}.

A two-person zero-sum discrete-time stochastic game (with finitely many
states and actions) has a limiting-average value [5]. However, this does not
imply that a convergent family (I's)s-o has an asymptotic limiting-average
value. A non-zero-sum discrete-time stochastic game (with finitely many
states and actions) has a limiting-average correlated equilibrium payoff [11],
but it is unknown if it has a limiting-average equilibrium payoff.

Recall that v € R® is an asymptotic limiting-average value of the family
(['s)sso if for every e > 0 there are strategies o of player 1 and 75 of player
2 and a duration dg > 0, such that for every strategy 7 of player 2, strategy
o of player 1, and 0 < § < §y, we have

€+ Eg(;,fﬂ(; Z U(Z) 2 —€+ Ejm;gfs‘
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The definition implies that a family (I's)s~o has at most one asymptotic
limiting-average value.

Recall that v € RV*% is an asymptotic limiting-average equilibrium payoff
of the family (I's)s-o if for every & > 0 there are strategy profiles o5 and
a duration dy > 0, such that for every strategy 7¢ of player i and every
0 < 6§ < dp, we have

e+ By > 0'(2) > —e+ Ei_. g5

We prove that a family (I's)s~0 that converges strongly has an asymptotic
limiting-average value in the zero-sum case (Theorem 4), and an asymptotic
limiting-average equilibrium payoff in the non-zero-sum case (Theorem 11).

A variation of the limiting-average value, respectively, limiting-average
equilibrium payoff, is the weak limiting-average value, respectively weak limiting-
average equilibrium payoff, obtained by exchanging the order of the limiting
and the expectation operations. Therefore, we say that v € RV*S is an
asymptotic weak limiting-average equilibrium payoff of the family (I's)s=o if
for every € > 0 there are strategy profiles o5 and a duration 6y > 0, such
that for every strategy 7° of player i and every 0 < § < &y, we have

e+ liminf E7 g5(s) > v'(z) > —e + limsup EZ_, _,g5(s).
5§—00 $—300 §

In the general model of repeated games (which includes repeated games
with incomplete information), the existence of a limiting-average (value or)
equilibrium payoff implies the existence of a weak limiting-average (value or)
equilibrium payoff, but not vice versa. In the game models studied in the
present paper, all results that we can prove regarding the weak limiting-value
hold also for the limiting-average value. Therefore, no special consideration
is given to these weaker concepts. It should be noted, however, that in the
analogous study of the general model of repeated games, in particular in
repeated games with incomplete information, the limiting-average value or
equilibrium payoff will typically not exist, while the weak limiting-average
value and equilibrium payoff may exist in some of these models.

2.4 The mixed discounting and limiting-average games

The mixed time-separable and the limiting-average (respectively, the weak
limiting-average) valuation of payoffs is a positive linear combination of a
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time-separable valuation u,, and the limiting-average (respectively, the weak
limiting-average) valuation. It is represented by a measure w on N U {cc},
where w(oo) represents the weight given to the limiting-average (or weak
limiting-average) valuation, and w(m) represents the weight of the payoff
at stage m € N. A normalized mixed time-separable and limiting-average
(or weak limiting-average) valuation of payoffs is a convex combination of a
normalized time-separable valuation u,, and the limiting-average (or the weak
limiting-average) valuation, and is represented by a probability measure on
NU {o0}.

Let Wy = (w')sen be a vector of positive measures on N U {oo}, mys > 0,
and let vs = (V});en be a vector of N payoff functions v} : A — R. The game
Fm%i”‘s is the game I'; where the valuation of player i of the play (2o, ag, 21, - - .)
is the sum of three terms

V5 (Zms s my) + w5(00) slglgloga +Zw5 M) g5 (Zm, @),

if the limit exists.

The limit of gi(s) as s — oo need not exist. Therefore, in defining (the
value or) an equilibrium payoff v of I‘m“’ , we require that for every € > 0 the
(e-optimal or) e-equilibrium strategy result in a distribution on plays such
that the expectation of the v}(z,,;, am(;)—i—wf;(oo)gg—i—zz;o wi(m)ge(zm, am) 18
within € of v*, and no unilateral deviation by a player, say player ¢, can result
in a distribution on plays with an expectation of vi(2y;, ams) + wi(00)gs +
> s wi(m)gs(zm, am) greater than v + e.

Theorem 13 asserts that if 1) (I's)s>o is an exact family, 2) the nonsta-
tionary discounting N-vector measure Ws converges (as 0 goes to 0) to the
N-vector measure @ on [0, 00], and 3) (myg, vs) converges to (t,v), then for
every € > 0 there are strategy profiles o5, an N x S vector v, and d§y > 0,
such that for 0 < § < dg, 04 is an e-equilibrium of Fm‘s’ with a payoff within

e of v.

2.5 The uniform games

In a uniform (value or) equilibrium payoff v, we require that for every ¢ > 0
there be a time sy, and a strategy profile for which for every s > sy the
expectation of gs(s) is within € of v, and that there be no unilateral deviation
by a player, say player i, and a time s > s such that the expectation of gi(s)
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is more than v* + ¢. It is known that a uniform value exists in the zero-sum
case (with finitely> many states and actions) [5]. In the discrete-time non-
zero-sum case (with finitely many states and actions), (a uniform correlated
equilibrium payoff exists [11], but) it is unknown if a uniform equilibrium
payoff exists in this case.

We say that v € RY is an asymptotic uniform value of the family (I's)sso
if for every € > 0 there are 1) a time sy > 0, 2) a duration d; > 0, and 3)
strategies o5 of player 1 and 75 of player 2, such that for all strategies 7 of
player 2 and o of player 1, duration 0 < § < dy, and time s > sq, we have

o B, 000(5) 2 0(2) > —e + B 00(s).

The definition implies that a family (I's)s-o has at most one asymptotic
uniform value.

Similarly, we say that v € R¥*S is an asymptotic uniform equilibrium
payoff of the family (I's)s=o if for every € > 0 there are 1) a time sq > 0, 2)
a duration 0y > 0, and 3) strategy profiles oy, such that for every player i,
strategy 7¢ of player 7, duration 0 < § < dy, and time s > sq, we have

e+ B5,g5(s) 2 v'(2) 2 —e + B _ig5(s).

An exact family has an asymptotic uniform value in the zero-sum case
(Theorem 6), and an asymptotic uniform equilibrium payoff in the non-zero-
sum case (Theorem 12).

Remark 1 The existence of an asymptotic uniform equilibrium payoff has
the following corollaries.

If v 1s the asymptotic uniform equilibrium payoff of a family (F5)5>0 then
for every € > 0 there is dg > 0 such that if 0 < § < &y and Ws = (W')ien 18 a
profile of nonstationary discounting probability measures on N with w%(0) <
00y, then the game L's,, has an c-equilibrium payoff within € of v.

2.6 The robust nonstationary discounted solutions

Given a nonstationary discounting measure w on [0, o0}, we define g}(w) by

gg( w) := liminf gi(ws) and g&(w) := limsup gi(ws),

ws—w ws—rw

3Without the assumption of finitely many actions a uniform value need not exist [13].
The assumption of finitely many states is obviously needed.
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where the lim inf and lim sup are over all nonstationary discounting measures
ws on N that converge to w. If 1., denotes the probability measure on [0, 0o]
with 1,(c0) = 1, then gg(loo) = g} and gi(ls) = G-

Fix a nonstationary discounting measure w on [0, co] and a profile W =
(w');en of nonstationary discounting measures w’ on [0, oo].

We say that v € R is an asymptotic w-limiting-average value of the
family (T's)s=o if for every € > 0 there are strategies o of player 1 and 75 of
player 2, and a duration dp > 0, such that for every strategy 7 of player 2,
strategy o of player 1, and 0 < § < dp, we have

€+ Eé(;,rﬂ(;(w) > U(Z) > —e+ E§'7Tég(5(w)'

We say that v € RS is an asymptotic w-uniform value of the family
(T's)s>0 if for every € > 0 there are strategies o5 of player 1 and 75 of player
2, such that for all strategies 75 of player 2, strategies o of player 1, and
nonstationary discounting measures ws on N that converge (as 6 — 0+) to
w, we have

e+ liminf B2 _.gs(ws) > v(2) > —e + limsup EZ. _ gs(ws).
6—0+ 75 5—0+ 576

Similarly, we say that v € RY*9 is an asymptotic ﬁ-limz’tz’ng—avemge
equilibrium payoff of the family (I's)sso if for every £ > 0 there are strategy
profiles o5 (6 > 0) and a duration dp > 0, such that for every player 7, strategy
7} of player i, and 0 < § < &y, we have

e+ Ejégg(wi) > vl(z) > —e 4+ Ejgi Tg-gg(wi).

We say that v € RV is an asymptotic w—umform equilibrium payoff
of the family (I's)s>o if for every € > 0 there are strategy profiles o5, such
that for every player i, all strategies 7{ of player i, and all nonstationary
discounting measures wj on N that converge (as § — 0+) to w’, we have

e + liminf EZ gj(wj) > v'(z) > —¢ + limsup EZ . _, g5(w}).
60+ §—0+ 95 75
Note that v is an asymptotic limiting-average, respectively asymptotic
uniform, equilibrium payoff of a family (I's)s~o if and only if it is an asymp-
totic 1,-limiting-average, respectively asymptotic 1,-uniform, equilibrium
payoff of this family. Therefore the results in the paragraph below generalize
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our results about the existence of an asymptotic limiting-average, respec-
tively asymptotic uniform, equilibrium payoff.

A strongly convergent family (I's)s-0 has an asymptotic w-limiting-average
equilibrium payoff, and an exact family (I's)s=o has an asymptotic W-uniform
equilibrium payoft.

In what follows we define the asymptotic w-robust value and the asymp-
totic w-robust equilibrium payoff.

We say that v € R® is an asymptotic w-robust value of the family (I's)s=o
(of two-person zero-sum games) if for every € > 0 there are strategies o5 of
player 1 and 75 of player 2, such that for all strategies 75 of player 2, strategies
oy of player 1, and nonstationary discounting measures w; on NU {oo} that
converge (as 6 — 0+) to w, we have

S z ) % _ : z =1
€+ h(srgéilf EU§7T§Q6(w5) >0'(z) > —e+ hgr_l)?):_lp ETglﬂg’g&(wg).

We say that v € RVN*9 is an asymptotic W -robust equilibrium payoff of the
family (I's)s=o if for every e > 0 there are strategy profiles os, such that for
every player i, all strategies 7} of player 4, and all nonstationary discounting
measures ws on N U {oo} that converge (as § — 0+) to w, we have

€+ hﬂéﬂf Egdgfs(wg) > vi(z) > —e + hzrsg?)ﬂp Ejgiﬂggg(wg).

An asymptotic W-robust equilibrium payoff of a family (['s)s0 is (by def-
inition) an asymptotic w-limiting-average equilibrium payoff and an asymp-
totic W-uniform equilibrium payoff.

Theorem 13 asserts that for every nonstationary discounting N-vector

measure W on [0, 00], an exact family (I's)s=o of N-person games has an
asymptotic W-robust equilibrium payoft.

2.7 The variable short-stage duration games

The paper states and proves asymptotic results on families (I's)s~¢ of discrete-
time stochastic games. In each game I's the stage duration is a constant
positive number 6 > 0. The results remain intact also in the case where
the parameter 0 is a sequence of stage durations d = (d,,)m>0 With d,, :=
ZO<m<n Om —n—seo 00, Where d,, is the duration of the m-th stage, the m-th
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stage payoff function is gs,, (or g, for short), and the m-th stage transition
function is ps,, (or p,, for short).*

The condition that the constant stage duration is sufficiently small needs
to be replaced with the condition that the supremum of the stage durations,
d(0) := sup,,>o Om, is sufficiently small. A family (I's)s; with variable stage
duration converges in data if sup,,sq ||gm/0m — gl| and sup,,~o ||pm/dm — p
converge to zero as d(d) goes to zero. It is an exact sequence if gn,, = 6,9
and p,, = 0,4, and it converges strongly if it converges in data and for every
d,m >0,z #z and a € A(2), pm(2/, z,a) # 0 iff u(z', z,a) #0.

The p-discounted present value of the payoff g,,, at stage m is g [ [o< ;. (1—
d;p) (where a product over an empty set of indices is zero). Therefore, in
the p-discounted game I's, the valuation of a play (2o, ag, ..., Zm, @m...) by
player i is > Gm(2ms @m) [lo<jcm(1 — 95p)-

In the case of a time-separable valuation, ws is said to be nonstationary
discounting if %ﬂ’f) is nonincreasing in m. We assign to the measure wy
on N the measure wj on [0,00) that is supported on {d, : n € N} and
wj(d,) = ws(n). We say that ws converges, as d(d) — 0+, to the measure w
on [0, 0c0) if wf§ converges w* to w.

Similarly, in the limiting-average games with variable stage duration 9,
we set §(5) = + Y 0<mid,<s Im(Zm, @) and in the definitions of g and g, the
condition ws(m) < n needs to be replaced with ws(m) < nd,,.

3 Convergence of stochastic games with short-
stage duration

We study the “convergence” of the family (I's)s~o, and the presentation of
the “limit” as a continuous-time stochastic game TI'.

We define various conditions of the dependence of the transition rates
ps on the stage duration J. Some of these conditions relate directly to as-
sumptions on the homogeneous Markov chain of states that are defined by an
initial state, a stationary strategy, and the stage duration ¢. Each one of the
conditions can be interpreted as a consistency, or approximate consistency,
of the models I's as ¢ varies.

Condition (p.0) asserts that the probability of a state change within the

“Moreover, the stage-dependent duration §,,, payoff g, and transition function p,,
can depend on past history.
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first m stages (namely, in a time ¢ < mJd) converges to zero as md goes to zero.
In particular, the probability of a state change in a single stage converges to
zero as 0 goes to zero. Condition (p.0) is equivalent to mps(z, z, a) converging
to zero as md goes to zero. Recall that condition (p.2) is lims_o4 ps/0 = u
where 11 : S x A — R, and note that condition (p.2) implies condition (p.0).

Recall that condition (p.3) requires (p.2) and that ps(2’, z,a) > 0 if and
only if u(2’,z,a) > 0 (where p(2’,z,a) is the limit, as § goes to zero, of
ps(2',2z,a)/5). Condition (p.3) implies that the ergodic classes of the ho-
mogeneous Markov chain that is defined by a stationary strategy and the
transition rates ps are independent of 9.

Recall that condition (p.1) is ps = du, condition (p.1) implies condition
(p.3), and condition (p.3) implies condition (p.2). Therefore, each asymptotic
property that holds in any family (I's)s~o that obeys (g.2) and (p.k) holds
also in any family (I's)s~o that obeys (g.1) and (p.k’), where k' = 3 if k = 2
and k' = 1if k = 3.

Recall the following definitions of convergence in data and strong conver-
gence.

Definition 1 (Convergence in data) We say that I's converges in data
(as & — 0) if the family (I's)s>o satisfies conditions (g.2) and (p.2).

Definition 2 (Strong convergence) We say that I's converges strongly
(as 6 — 0) if the family (T's)sso satisfies conditions (g.2) and (p.3).

Next, we wish to define the “convergence” of the family (I's)sso as a
convergence (as 6 — 0+) of the stochastic process of states and payoffs that
is defined by the initial state and a strategy o. Obviously, in defining the
convergence of the stochastic process of states and payoffs one has to take
into account the stage duration . The state z, in the play of the discrete-
time stochastic game ['s is interpreted as the state at time nd. Similarly, the
sum Z;:Ol 9s(zj, a;) of stage payoffs in stages 0 < j < n is interpreted as the
cumulative payoff in the time interval [0, nd].

Definition 3 (Convergence in stationary dynamics) We say that I's con-
verges in stationary dynamics if for all pure stationary strategies o, states

2z €8, timest >0, and positive integers ng such that ngd 6—0> t, we have
-0+

Pfia(zné = Z,) 5_)—0:_ FZz’ (t)
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and

ns
E? Qs
5,0 Zg5<z]’ aj) 6—>—0—>&— Gt(za 0)7
7=0
where (0,2, z,t) — FZ_(t) € R and (t,z,0) = Gy(z,0) € RN are functions
that are defined for all pure stationary strategies o, states z2', z € S, and times
t>0.

3.1 Stationary convergence

Proposition 1 The following conditions are equivalent:
(A) (T's)s=0 converges in stationary dynamics.
(B) (I's)s=0 converges in data.

Proof. (A) = (B). Assume condition (A) holds. Obviously, }_.cg P, (2ns =
') = 1. Therefore, »_ .4 F7.,(t) = 1. Applying condition (A) to ns = 0

and 2’ = 2z, we have F7_(0) = 1. Applying condition (A) to ¢t = 0 and all

nonnegative integers ng with dns 5—0> 0, we deduce that for every ¢ > 0
-0+

there are t. > 0 and . > 0, such that for every 0 < § < J. and n with
no < t., we have P (2, = z) > 1 —¢ for all states z € S and pure stationary
strategy profiles o.

Fix z € S and a € A(z), set K5 = K;(z) = >_.,.ps(?',2,a), and let o
be a pure stationary strategy with o(z) = a, and n = ns = [t1/3/0] (where
(%] denotes the largest integer that is less than or equal to *). Then, for
0 < O3, 1/3 > Pi(on # 2) 2 20 Pi,(Vj <m z; = zand 2 # 2, =
Zn) > v (1 — Ks)"'Ks2/3 = (1 — (1 — K5)™)2/3, which implies the
inequality (1 — K5)" > 1/2. Therefore, limsups_,o, Ks5/0 < oo. Therefore,
there is a positive constant K such that for all 6 > 0, z € S, and a € A(z),
we have >, ps(2', 2, a) < K.

Next, we prove that if for a pair of distinct states 2’ # z and an action
profile a € A(z) we have liminfs ,o, ps(2’, 2,a)/0 < ¢, then, for ¢t > 0 suffi-
ciently small and a stationary strategy o with o(2) = a, we have FY_,(t) < ct.
Indeed, the set {z, = 2/, 29 = 2z} is the union of the disjoint sets Y, .» =
{MV0O < j <m, z = 2,2, = 2" and 2z, = 2'}, where m ranges over the
positive integers 1 < m < n and z” ranges over all states z” # z. Let ¢ > 0
and set n = n; = [t./0]. Note that Pj, (Yy.r) < ps(?,2,a) for 2" = 2/
and S0 S sonpor P5 (Y zn) < €Kdn for § sufficiently small. Therefore,
if 6 > 0 is sufficiently small so that, in addition, ps(z’,2,a)/0 < ¢ and for
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all 2" # z and a € A(z) we have ps(2”,2,a) < K4, then P§ (2, = 2') <
>t Pig(Yor) + €Kon < (c + Ke)on. Therefore for t > 0 sufficiently
small we have F7_,(t) < ct.

Finally, we prove that if for a pair of distinct states z’ # z and an
action profile a € A(z) we have limsups_q, ps(2’,2,a)/d > ¢, then, for
t > 0 sufficiently small and a stationary strategy o with o(z) = a, we have
F7..(t) > ct. Indeed, the set {z, = 2/, 20 = 2} contains the disjoint sets
Y ={V0 < j <m, =z = 2,2, =2 = z,}, where m ranges over
the positive integers 1 < m < n. Let ¢ > 0 and set n = ny = [t./J].
Note that P, (Yin.) > (1 —€)’ps(2’, 2,a) for § sufficiently small. There-
fore, if § > 0 is sufficiently small so that, in addition, ps(2’,z,a)/0 > ¢,
then P} (2, = 2') > > 0 | P5;(Ym) > n(1 — ¢)*dc. Therefore for t > 0
sufficiently small we have F7_,(t) > ct.

We conclude that the lim sups_,o, ps(2, 2, a)/0 and the liminfs_o1 ps(2, 2, a)/0
coincide.

We will now prove that the second part of (B) holds. Fix a player i € N
and assume that limsups_,o, [|gi]|/d < oo, where ||gi]| := max,, |g}(z, a)].
For t > 0 let v(z,0) = %Gt(z,a). Then, for 6 > 0 sufficiently small,
95(z,0(2)) /6 — 2¢||g5]1/6 < i (z,0) + . Therefore

limsup g5(z,0(2))/6 < 7,.(2,0) 4 € + 2¢ limsup || g]| /4,

0—0+ 0—0+
and therefore

limsup g5(z,0(2))/6 < liminf~! (z,0).
§—0+ e=0+ F

Similarly, for 6 > 0 sufficiently small, 7/ (z,0) —e < g§(z,0(2))/d+2¢|| ;]| /9,
and therefore limsup, o, 77 (z,0) < liminfs_ oy g5(2,0(2))/0. Given a €
A(z) and applying these inequalities to a stationary strategy o with o(z) =
a we conclude that the liminfs o4 gi(2,a)/d and the limsup, o, g5(z,a)/d
coincide.

It remains to prove that condition (A) implies that lim sups_,q, ||g4]//d <
0. For every 1 > § > 0 let 25 € S and a5 € A(z) be such that |gi(zs, as)| =
llgi|l. Let € > 0, and let 0 = o5 be a stationary strategy with o(z;) = as.
Set n =ns = [t./0] and zy = zs. If g%(zs,as) > 0, then, for sufficiently small
0 > 0, we have G} (25,0) +1./3 > E» 7"~ 39};(2'],&]) > (1 — 2e)ngi(zs, as).
Therefore, if € < 1/3 we have g§(zs,as5)/0 < 3|y (z,0)] + 1 for 6 > 0
sufficiently small. If ¢*(z5,a5) < 0, then, for sufficiently small § > 0, we
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have G (z5,0) — /3 < B2 370 0 gi(zj,a;) < (1 — 2¢)ngi(zs,a5). There-
fore, if ¢ < 1/3 we have gg(z(;,a(;)/é > —3|7;.(z,0)] — 1. This proves that
limsup; o, [lg5]/6 < 3]77.(2,0)[ +1 < o0.

(B) = (A). Let o be a stationary strategy and let () be the S x .S matrix
whose (z, 2')-th entry is @, .» = u(2’, z,0(z)). Note that for 6 > 0 sufficiently
small, I + Q) is a transition matrix, where I stands for the identity matrix,

and |1 4+ 6Q| = max.es >, cq|({ + Q). | = 1. In addition, ’? (which

equals by definition the convergent sum Zoo éj_c?) is an S x S matrix, and

(e°Q)" = €@, Let Ps be the S x S transition matrix whose (z, z')-th entry
is (Ps)z = Lo+ ps(2, 2,0(2)). Therefore, if n is a positive integer, then
P (2n = 2') = (Fy').,». By the assumption on ps and the definitions of @
and €@, we have ||e°? — Ps|| < o(8) as § — 0+.

For any two S xS matrices (or elements of a norm algebra) A and B we
have A” — B =57 A" *(A — B)B*! implying that [|A" — B”H <||A-
Bl >3, HA||]HB||" /. Therefore, [|P} — || < [|P; — || X272 [ <
o(d)n as 5 — 0+.

Therefore, ||PP — Q| < ||PP — ™9 + [[e!? — e™®|| — 0 as § — 0+
and nd — t. We conclude that Py (z, = 2/) — F7,(t) = (¢'9).. € R as
o — 0+.

By assumption (B) we have gs(z,a) = dg(z,a) + o(d). Therefore, if 6 —
0+ and ns0 — ¢ > 0, then |Ef Z?‘Solgé(z],a]) B, >0 Yog’ (zj,a])| — 0.
If 6 = 0+ and nsd — ¢t > 0, then, as shown earlier, P5U(zn = z) — F7.(1),
and, therefore, £ > "% Y09 (25, a;) = Gy(z,0) fo ves F2(8)g(#,0(2"))ds.
Therefore, E3 Z;”Ol gi(z;,a;) = Gy(z,0) as 6 — 0+ and n55 —t>0. 0O

Remark 2 The above proof of condition (B) implying condition (A) proves
that for every stationary strategy o, every timet > 0, all states z, 2" € S, and
all integers 0 < ng with ngd —s—ot t, PZ(zn; = 2') =50+ F;Z,(t) etQ
where @ is the S x S matriz whose (z,2")-th entry is Q. = (', z,0(z ))

Note that every continuous-time stochastic game I' = (N, S, A, i, g) is a
“data limit” of the family of discrete-time stochastic games I's = (N, S, A, ps, gs),
where gs(z,a) = 0g(z,a) and ps(2', z,a) = du(z’, z, a) for all pairs of distinct
states 2’ # z and every action profile a € A(z).
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3.2 Markov convergence

The next proposition gives a sufficient condition for a family of Markov strate-
gies o5 in I'y to have a continuous-time limiting dynamics and payoffs as
d — 0+. In the formulas that follow, we view o5(z,7) (j € N) as a measure
on A(z); ie., o5(2,j) € A(A(2)), and 05(7) := (05(2,7)):es is an element
of X,esA(A(z)). Therefore, for any fixed z € S, any linear combination of
05(z,7) is a measure on A(z). Similarly, if o : S x Ry — A(A) is measur-
able With o(z,t) € A(A(z)), then, for any function f € Li(R,), the integral
J° f(t)o(z,t)dt is well defined.

We say that the Markov strategies o5 in I's converge w* if for every contin-
uous function f : R, — R with bounded support, the limit of Z;io f(j6)oos(z,7)
as 0 — 0+ exists. In that case, there is a measurable function o : S x Ry —
A(A) (With a(z t) € A(A(2))) such that for every f € Ll(RJr) the limit
of [7f z,[t/d]) dt as § — 0+ exists and equals [~ f(t)o(z,t)dt, and
we say that the discrete-time Markov strategies oy converge w* to (the
continuous-time Markov correlated strategy) o : S x Ry € A(A).

Whenever the conditional probability P5?(FE; | Es) is independent of the
initial state zg, we suppress the superscript of the initial state zg.

Proposition 2 If the (correlated) Markov strategies o5 in I's converge w* to
o: S xRy — A(A) and the family of discrete-time stochastic games (I's)s>o
converges in data, then, for every 0 < s < t, there are S x S transition
matrices F7(s,t) such that

Po(zn=2"| 2= 2) = FZ(s,1) as 6 — 0+,kd — s, and nd — t,

and

EZ Z 95(Zm, Qm) —>/ Z g(z',o(Z,t))dt as 6 — 0+ and nd — t.
0<m<n z'eS

Proof. As the family of discrete-time stochastic games (I's)s>o converges in
data, there is a positive constant K > 0 such that for every (z,a) € A we
have |ps(z,z,a)| > 1 — K§. Therefore, it 0 < k < n, |Psy(2 = 2 | 2 =
2)— L] <1—(1—K3§""* — 0asnd—kd— 0+. Therefore, it suffices
to prove that for every s < t there are sequences ks < ngs such that ks0 — s
and nsd — t such that

Prsos(zn, = 2' | 2y = 2) — F7.(s,t)as 6 — 0+ .
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We will prove it for ng = [t/d] and ks = [s/d].

Assume that the Markov strategies o5 in I's converge w* to o : S x
R, — A(A). Let M be the space of all S x S matrices @, let M, be
the subset of all its matrices @ with >, Q.. = 0 for every z € S and
Q. > 0 for all z # 2/, and let M; be the subset of M of all transition
matrices. The space M is a (noncommutative) Banach algebra with the
norm [|Q| = max.cg ), cq|Q: |, and M; is closed under multiplication.
For an ordered list Fy, . .., F; € M we denote by [[7_, F; the matrix (ordered)
product F1Fy ... F}.

Let @ : [0,00) — M be defined by Q.. (u) = u(2, z,0(z,u)), and let
Q° 1 [0,00) — M be defined by Q2 ,(u) = ps(2', 2, 05(2, [u/d])) /6. As (Ts)s0
converges in data Q) (u) = (2, z,05(z, [u/d])) + o(1) as § — 04. There-
fore, f Q) (u)du = p(?, z, fst os5(z, [u/0])) du+o(1) as § — 0+, where for a
measure o on A( ) we deﬁne p(2' 2z, 0) =3 e ary @(a)u(2', 2, a). Therefore,
as the Markov strategies os converge w* to o, for every s < t we have

/Q5 ) du v /:Q(u)du

Let G be the transition matrix (G9).. = ps(?, z,05(2,7)) + L, and

given 0 < s < t we define G%(s,t) to be the transition matrix H;/‘Es/é Gy,
where a product over an empty set of indices is defined as the identity. It
suffices to prove that G°(s,t) converges as § — 0+.

Let C =2max,, |u(z, z,a)| < C'. It follows that for every ¢t > 0 we have
Q)] < C, and for sufficiently small § > 0 we have ||Q°()|] < C’. Let
Ls(s,t) = [t/d] — [s/d], and note that §Ls(s,t) <t — s+ 0.

As M is a Banach algebra, for every finite sequence @)1, ..., Q,, of ele-
ments in M, we have

m

NICEEOE ZQ | < 2= 19l —1—ZIIQJII (1)

j=1
Inequality (1) follows from the inequality e* > 1+ z, the triangle inequality,
and the Banach algebra inequality ||QQ'|| < |Q||||Q’||. Indeed, if §; = ||Q]H
then || [T/, (1+Q;)—I—>10 Qjll < [Te,(146;)—1=3",60; < T
1-— Zm_ 6;.

As G =1+ f]{f% Q°(u) du, J6+6 |Q%(u)| du < 6C", and e — 1 — x is
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monotonic increasing on x > 0, for all 0 < s < t, we have

6[t/9]
|G (s, 1) /Q5 )du|| < \|G5(s,t)—f—/ Q°(u) dul| + 26C’
8[s/9]
< ULt 1 — Ls(s,1)C"8 4 26C"
< Y (t— 54 6)C" +20C"
< (t—s)?C"
for (t —s)C" <1 and § > 0 sufficiently small.
For every sequence s=ty <t <...< tk = t, set A; = G°(t;_1,t;),
B5—I+f )duandB—[—l—f u)du, j = 1,...,k. Note

that G°(to, ) H -1 A; and H] 1 A5 - Hj:lB Zz 1H2 14, j(Ai

By) HJ _ip1 Bj. For1 < j <k, ||A;]] = 1, and for sufficiently small maxlzl(tl—
1), |Bill = 1 for every 1 < i < k. Therefore ||[];_, 4; — T[]}, Bj|| <

zf A = Byl < S8 1A = B+ 08, ||B5—B-|| Therefore forasufﬁ—

ciently large k, by setting t; = s+j(t—s)/k and F(t;_1,t;) = ]—l—j; w) du,

there is a (sufficiently small) 6(k) > 0 such that for 0 < 5 <0 (k) we have

k
1G°(s,t) — [[ F(ti=1. )]l < 2(t — 5)°C" /.
j=1

Therefore, supgs 5 s [1G°(s,t) — G (s,1)|| < 4(t — 5)2C"/k, implying
that limy,_,e0 SUPg—s 55k [|G° (5, ) — G?(s,t)|| = 0. Therefore, G°(s,t) con-
verges to a limit as § — 0+. O

Remark 3 The result applies in particular to profiles o5 = (0%)ien of (un-
correlated) Markov strategies in I's that converge w* to (a continuous-time
correlated Markov strategy) o : S x Ry — A(A). In this case the w* limit o
need not represent a profile of continuous-time Markov strategies.

For example, if o} and o} play (7, L) at even stages and (B, R) at odd
stages, then the Markov strategy profiles o5 = (0}, 0%) converge w* to (the
continuous-time stationary correlated strategy) o with o(*)(T,L) = 1/2 =
o(%)(B, R). Therefore, asymptotic results that involve referral to Markov
strategies need special attention. They are not obtained by simply “taking
limits.” However, if 0 : S x Ry — A(A) is a continuous-time correlated
Markov strategy, there are profiles of pure (and thus uncorrelated) Markov
strategies o5 = (0%);en such that os converge w* to o.
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Remark 4 Proposition 2 holds also in the model of variable stage duration
games. The conditions 6 — 04, k0 — s, and nd — t, are replaced with
d(0) — 04, dp — s, and d, — t respectively, and the term gs(zm,an) is
replaced with g (zm, am).

The proof of Remark 4 is obtained by the following (additional) notational
modifications in the proof of Proposition 2. The inequality ps(z,z,a) >
1 — K¢ is replaced with p,,(z,z,a) > 1 — Ko, for every m > 0, the term
(1 — K6)"* is replaced with [[,.,,.,(1 — K6,,), and a term of the form
[t/6] is replaced with the largest integer m such that d,, < ¢. The definition
(in the proof of Proposition 2) of the S x S matrix Q7 _,(u) is modified to
Q) .(u) = puys(?,2,05(2, [u/0]))/Oss. The inequality 0 < & < (k) is
interpreted as 0 < d(0) < o(k).

4 Two-person zero-sum stochastic games with
short-stage duration

4.1 The discounted case

Fix the sets of player N = {1,2}, states S, and actions A, and let I'; =
(N, S, A, gs,ps), or I's = (gs, ps) for short, be a stochastic game whose stage
payoff function gs and transitions ps depend on the parameter ¢ that repre-
sents the single-stage duration. Recall that I's , denotes the (unnormalized)
discounted game I's with discount factor 1 — pd, V;, denotes its value, and
V, € RS is the asymptotic p-discounted value of (T's)s=o if Vs, —vs04 V).
Given a family (I's);>0 that has an asymptotic p-discounted value V,, we
say that the stationary strategy o, respectively 7, is asymptotic p-discounted
optimal if for every € > 0, there is §p > 0, such that for every 0 < § < 9y,
strategy o* of player 1 (in I's), strategy 7* of player 2 (in I's), and state z,

o0 o0

€+E§,J,T* Z(l_pé)mgl§<2m7:pm) 2 ‘/;J(Z) 2 _€+E§,U*,T Z(l—p5)mg5(2m,xm)

Given a converging family (I's)sso, we denote by g and p the limits, as
d — 0+, of gs/0 and ps/d respectively.

We denote by X*(z), respectively X (z), all probability distributions over
A(z), respectively over A(z) (= A'(z) x A%(z)). For z € S and z' € X'(z)
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we denote by x! ® 22 the product distribution x € X(z) that is given by
z(a) = x'(a')z?(a?) for a = (a',a®) € Al(z) x A%(z). For any function
h : aw— h(a), that is defined over A(z), e.g., A(z) 3 a — g(z,a) or A(z) >
a— u(z', z,a), we denote also by h its linear extension to X (z), i.e., h(z) =

ZaeA(z) z(a)h(a).

Theorem 1 Every converging family (I's)sso has an asymptotic p-discounted
value, which equals the unique solution V € R of the system of S equations,
z €8S,

pv(z) = max min (g(z, Tt ® %) + Z w2, 0t ® x2)v(z’)> . (2)

zleX1(z) 22€X?(z) ves
and each player has an asymptotic p-discounted optimal stationary strategy.

Proof. By the theory of discrete-time stochastic games, V; , exists and is the
unique solution of the system of equations

: 1 2 / 1 2 /
- , > (1 po)P : .
U<Z) wlren)?ll}%z) CEQIGIE?(Z) <g(5(z v ® ! ) + zles( p ) 5<Z | o ® ! )U(Z )>
(3)

Since Ps(2' | z,a) = ps(Z', z,a) for 2/ # z, and Ps(2' | z,a) = 1 + ps(#, z,a)
for 2/ = z, we can deduce, by subtracting (1 — pd)v(z) from both sides of
the z equation, that Vj, exists and is the unique solution of the system of
equations

_ : 1 2 . / 1 2 /
pou(z) = mex —min (gzs(w ® >+Z,§;S(1 pO)ps(7s 2, ' @ a?)o(z )) -
(4)

For gs = dg and ps = 1_‘5?#, v solves (4) if and only if it solves (2). For
0 > 0 sufficiently small, ps = 1_5? 1 indeed represents transition probabilities.
Therefore the system (2) of equations has a unique solution.

Let V' be the unique solution of (2). Let o be a stationary strategy of
player 1 with o(z) maximizing (over all z' € X!(z))

min  g(z,2' ® 2?) + Z Wz, 2t @ )V (). (5)

2€X2
v ) z'eS
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Therefore, for every z € S and x? € X?(z) we have
g(z,0(2) ® 2?) + Z w2, z,0(2) @ )V (2') > pV(2). (6)
zZ'esS

Fix € > 0. We claim that there is §y > 0, such that for every 0 < § < &,
strategy 7 of player 2, and state z,

Eg,O',T Z(l - pé)mg(s(zm, am) > V(Z) — €. (7)
m=0
Fix an initial history h,, = (20, o, ..., 2m), and let 22, = 7(h,,) and z,,, =

0(2m) @ 22, Let Yy := By 7 (95(2m, am) + (1 — p&)V (zma1) | Bm)-
Ym = QJ(zmuxm) + (1 - pé) Z P5(ZI ’ Zm; :UM)V(Z/>

z'eS

> 09(2m, Tm) + Z (2 2z, 2 )V (2') — pOV (2) + V(2m) — 0(9)
z'eS
> Vi(zm) — 0(0).
Therefore, for every m > 0, 5, _(1—p0)"gs(2m, am) = (1=pd)" Ef , V (2m)—
(1= po)" 1 Es, V(2ms1) — 0(0)(1 — pd)™. Summing over m = 0,1,..., we
deduce that

[e.9] [e.9]

B D (1= 8" g5(2ms am) = V() = 0(8) 32 (1= p8)" 504 V(2).

By duality, if 7 is a stationary strategy of player 2 with 7(z) minimizing
(over all 2 € X?(z))

max g(z,2' @2%) + Y (2,22t @)V (), (8)

rleX1(z
=) z'eS

then for every strategy o of player 1 we have

Bipr S (1= 08)"G5(ms tm) < V(2) +0(8) 3 (1= o)™ =505 V(2).

0

Denote by V,(g, 1) the asymptotic p-discounted value of the family (I's =

(gs, ps) )s>0 that converges (as 0 goes to zero) to (g, i), and by Vs (g, p) the

value of the discounted discrete-time stochastic game (g, p) with a discount
factor 1 — pd.
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Remark 5 The above proof of Theorem 1 shows that

1
lpll + 7

)
Vo(9, 1) = Vs,(69, 1_—p5,u) whenever § < (9)

where ||p|| = max, , |u(z, 2, a)|.

Remark 6 The proof shows in addition that a stationary strateqy o of player
1, respectively T of player 2, is asymptotic p-discounted optimal if and only
if, for every state z € S, o(z) maximizes (5), respectively, T(z) minimizes

(8)-

Remark 7 [t is worth recalling that a stationary strategy is a (behavioral)
strateqy whose mized action at every stage is independent of the stage, past
states, and past actions of the players. Therefore, the result holds also in a
model where some of the players do not observe past actions, and even in a
model where some of the players are unable to recall the current stage and
past states.

Remark 8 The proof that (2) has a solution was based on the corresponding
result from the theory of discounted discrete-time stochastic games. In what
follows we prove it directly.

For a vector v € R¥ we denote by ||v]| its maximum norm ||v]| := max.cg |v(2)].
For every z € S, a € A(z), v € R®, and x € X (2), G*[v](a) is defined by

[l + p e

Gfol(a) = —— <9(Z,a) + ) nle 2 a)(2) + HHHU(Z)> :
and (thus) G*[v](x) is defined by

Glo)(x) = > @(a)G[v](a)
a€A(z)
_ 1 (g(z,a:) £ () + ||u||v(2)> -

[l + p o
Define the operator @ from R® to R by

v(z) = max min G*[v](z! ® z?).
Q ( ) z€X1(2) z2€X2(z2) [ ]( )
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By the minmax theorem we have

v(z) = min  max G*|(z' ® 2?

Q ( ) z2€X2(2) zeX1(2) [ ]( )
and therefore v is a solution of Qv = wv if and only if it is a solution of
(2). Therefore, it suffices to prove that () has a fixed point. Note that

G*lv + clg|(z) = G*v](x) + ch|\|\lﬂ|p’ and therefore

Qv + cls)(2) = Qu + ||;||||—in .

In addition, () is monotonic; i.e., u > v implies that Qu > Qv, and therefore
for v,u € R¥ we have

[
v — Qul| < ————||lv — ull.
Qv —Qull < o=l

Therefore @) is a strict contraction and therefore () has a unique fixed point.

O

Remark 9 The following (alternative) proof of Theorem 1 is based on re-
sults from the theory of continuous-time stochastic games in conjunction with
stationary convergence of the family of games T's.

We apply notations and inequalities from [8]. First, one recalls that a pair of
stationary strategies, o of player 1 and 7 of player 2, where o(z) maximizes
(5), and 7(z) minimizes (8), is a pair of optimal strategies in the continuous-
time p-discounted game I' = (g, ), and V is its value. In particular, for
every stationary strategy 7* of player 2 and every stationary strategy o* of
player 1 we have

ECZ,,T*/ e " g(2z,0(2) @7 (2)) dt > V() > E(f*ﬁ/ e (2, 0% (2)R7(2)) dt.
0 0

Next, stationary convergence implies that for stationary strategies o’ of player
1 and 7’ of player 2 we have

[e.9]

E5 o Z(l — p0)" g5 (Zm, Am) =50+ Eé,vT,/ e (2,0 (z) @ 7' (2)) dt.
0

m=0
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Therefore, given € > 0, for ¢ > 0 sufficiently small, for every pure stationary
strategy 7* of player 2 and pure stationary strategy o* of player 1, we have

8+E§,O’,T* Z(l_pé)mng(Zm? am) > V(Z) > _€+E§,a*,7 Z(l_p6>mg5(zm’ am)'
m=0 m=0

In a discrete-time discounted game (with finitely many states and actions)
there is always a pure stationary strategy that is a best reply to a given
stationary strategy. Therefore V' is an asymptotic p-discounted value and
o and 7 are asymptotic p-discounted optimal strategies of the converging
famﬂy (F5)5>0. ]

The algebraic approach. Fix the finite state space S and the finite
action sets A’(z) (1 = 1,2 and z € S), and recall that A = {(z,a) : z €
S, a € A(2)}. The set of all (g, u, v, p, ', 22), where g € RA, u € RS*4 (with
(2’ z,a) > 0for S5 2 #2z€ Sanda€ A(z), and ), g u(7, z,a) = 0 for
(z,a) € A),v € RY 0 < p <1, 2" € X(2), that satisfies the following finite’
lists of inequalities,

pv(z) < min (g(z, 2@y’ + Yzt @ y2)U(Z’)> : (10)

- 2c X2
Yy (2) es

pv(z) = max (9(2, y @)+ 2yt e xQ)"U(Z’)) : (11)
yleXi(z) z'eS
is semialgebraic. Therefore, for each fixed (g, i), the graph of the correspon-
dence assigning to each p the asymptotic p-discounted optimal stationary
strategies of each player and the asymptotic p-discounted value function V,
is semialgebraic. Therefore (see, e.g., [1, 6]), there is a semialgebraic map
p+— (V,,0°,7F), where V, is the p-discounted asymptotic value and o and
TP are stationary asymptotic p-discounted optimal strategies. In particu-
lar, the map has a convergent expansion in fractional powers of p in a right
neighborhood of 0 (and a convergent expansion in fractional powers of p in
any one-sided neighborhood of a point 0 < py < 1). As V, is the the pé-
discounted value of the discrete-time stochastic game with payoff function dg

>The finiteness follows from the fact that the minimum and the maximum of a linear
function over a simplex is attained in one of the finitely many extreme points of the
simplex.
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and transitions ps = I_Lpéu it is bounded by ||g||/p. Therefore p — v, := pV,
is a bounded semialgebraic function. In particular, there is 1) a positive in-
teger M, 2) real coefficients ¢x(z), and 3) a positive discount rate p > 0, such
that for 0 < p < p the series Yo, cx(2)p*M converges and

oo

v(2) = 3 en(z)pHM.

k=0

If the game is one of perfect information, then each player has for each
1 > p > 0 a pure stationary strategy that is an asymptotic p-discounted
optimal strategy. Therefore (following the classical argument from discrete-
time stochastic games) the value function p — v,(2) is a rational function
in p in a right neighborhood of 0 (and in any one-sided neighborhood of a
point 1 > py > 0). It follows that there are p > 0 and real coefficients ¢ (2),
and pure stationary strategies o, i = 1,2, such that for p < p the series

Z,jio cx(2)p" converges,
vp(2) = Y enl(2)p",
k=0

and ¢* is asymptotic p-discounted optimal in the family (Ts)sso-

Covariance properties. Fix the sets of states S and actions A. Let
V,(g, 1) be the unique solution of the system (2) of S equations. Recall that it
equals the asymptotic p-discounted value of any family (gs, ps) that converges
in data to (g, p). (It is also the value of the continuous-time stochastic game
(N,S,A,g,1), eg., [8.) Consider the function V,(g, 1) as a function of p, g,
and p. Obviously, the p-discounted asymptotic value V,(g, 1) is monotonic
in g and covariant with respect to multiplication of the payoff function g by
a positive scalar. Namely, if ¢ > ¢ and « is a nonnegative real number,
Volg' o) = Vplg,p) and Vi(ag,u) = aV,(g,p). For a > 0, a vector V
satisfies equation (2) if and only if it satisfies the same equation when p is
replaced by ap, g is replaced by ag, and p is replaced by au. Therefore,
Vap(ag, ap) = V,(g, ). (In the continuous-time game interpretation, this
equality is interpreted as, and can be derived by, a simple rescaling of time:
t— at.)

Now we turn to the expression of the p-discounted asymptotic value as a
value of a discrete-time discounted stochastic game.
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If ||| <1, we assign to (the continuous-time game) I' = (N, S, A, g, i)
the discrete-time game I' = (N, S, A, g,p = pu). By Remark 5, the value
V,(g, p) of the discrete-time p-discounted (with discount factor 1—p) stochas-
tic game I' = ({1,2}, 5, 4, g,p = u) equals V,(g, (1 — p)p) whenever 0 < p <

1 —{[ull

Summarizing,
Volg, ) = V,(¢', 1) whenever g > ¢, (12)
V,(ag, Bu) = %Vp/ﬁ(g,u) whenever « > 0 and > 0, (13)
_ 1
Volg. ) = Vily, Tp“) whenever 0 < p <1 — [|u; (14)
equivalently,

Vo(g,0) = V,(g,(1— p)u) whenever 0 < p <1 and ||u| < 1.(15)

Note that for a constant payoff function g = ¢, we have pV,(c, 1) = ¢. The
normalization v, := pV, of the function V,, is a function of (g, u): v,(g, 1) =
pV,(g, pv). Given two transition rates p and 1/,

w(z'sz,a) p'(z
d =
(2, 1) maX{u,@,’Z’a), )

7270/)

|a€A(z),z,z'€S}—1,

where by convention x/0 = oo for z > 0, and 0/0 = 1.

Lemma 1 For every pair of payoff functions g and ¢ and every pair of
transition rates p and p' the following inequality holds:

(g 1) = vo(g, 1) lse < 4[S|d(pe, ") min{]|g|l, [|¢"]|} + lg — ¢'l|- (16)

Proof. The proof applies [10, Theorem 6] in conjunction with the covari-

ance properties (13) and (14). Fix p,g,¢,p, /. Let f > 0, and note

that d(u, p') = d(u/B,1/B). As p = Pu/B, equality (13) implies that

vp(g, 1) = 5Ve (g, 1/ B) = ve (g, 1/ B), and similarly, v,(¢', 1) = ve (g, 1/ B).
. max{||pll, ||’

We choose 5 > 0 sufficiently large, e.g., 8 > p + w, so that

p/B<1— % and p/f < 1— %. This will enable us to apply equality
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(14) in the third equality below. Therefore,

10,0 1) = 0y iloe = [N0ps5(d's 1/B) = 0p15(95 18/ )1
— |r§%/ﬁ<g’,u’/ﬁ> —g 15(9, 1/ 8) oo

Porog M Pe
||BV:0/5(97 (1_p)5) BVP/B(Q’ (1—p)ﬁ)HOO

< ALS|d(p, @) min{|gll, g1} + llg — Il

where the first and second equalities follow from (13), the third equality
follows from (14), and the last inequality follows from [10, Theorem 6]. O

Recall that the family of discrete-time stochastic games I's = (N, S, A, g5, ps)
converges strongly to I' = (N, S, A, g, u) if for all (2/,z,a) € SX A, gs(z,a) =
dg(z,a) + 0(d) and ps(2', z,a) = du(Z’, z,a)(1 + o(1)) as & — 0+.

Theorem 2 IfI's = (gs,ps) converges strongly toI' = (g, i) then pVs , =50+
PV, (1, g) uniformly in 0 < p < 1.

Proof. By Remark 5, Vs, = V,(g5/6, (1 — pd)ps/d). Therefore, vs, = pVs, =
Up(95: Hop) 1= PV,(G5: 1s,p), where g5 = g5/ and ps,(2', z,a) = (1 — pd)ps/é.
Therefore, as ||¢' — g|| = 0 as § — 0+ and d(u, it5,) —s5—0+ 0 uniformly in
p, inequality (16) implies that pVs, = v,(g5, is,p) —s—0+ Up(g, 1) uniformly
in p. 0

4.2 The asymptotic nonstationary discounted value

We start with a few simple and useful properties of nonstationary discount-
ing measures. First, if w is a nonstationary discounting measure on [0, 00|
then w has no atoms in (0,00), w is absolutely continuous on (0, c0), and
Cﬁl—‘:(t) is nonincreasing in 0 < ¢t < oo. Given~a nonstationary discount-
ing measure w on [0,00] and a finite sequence t = (tp = 0 < #; < ... <
ty < o0), we define the nonstationary discounting measure w;, or w for
short, on [0, 00] by @([t;, ;1)) = w([tj,tj41)), %2(t) being a constant (thus,
22ty = w([tj,tj41))/(tjr1 — t;)) on each interval [t;,;11) (0 < j <€), and
W coincides with w on subsets of [ty, co]. Set d(t) := maxo<;<e(tj41 — t;).

Lemma 2 Let w be a nonstationary measure on [0,00] and t = (to = 0 <

t1 < ...<ty < o0) a finite sequence. Then,

“odw,  do atd® g
—(t) — —(t)|dt <2 —(t)dt 17
|G- Graae<e [T Lo a7)

1 1
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and if the nonstationary discounting measures ws on [0, 00| converge to the
measure w on [0,00] then

te dwg dw
— (¢ dt 1
150 - G0l e (18)

Proof. As d—“’( ) is nonmcreasmg in t, ft”l ‘i;t” (t)— ( ) dt <2 fthrl dw (4) _

@ (t+d(f)) dt. Therefore [ |42 ()\dt—ZKjd JO G (-Gt dt <

221<]<£ft”1 do(p) — du(t 4 d( ) )dt < 2ft1+d g 4w (¢) dt, which proves (17).
In order to prove (18), it sufﬁces to prove that for every € > 0 there is
do > 0 such that for 0 < ¢ < do, |, |dw5( t) — (1) dt < 4e. Fix e > 0.
For every d > 0 and a nonstatlonary discounting measure v on [0, co|, we
define the nonstationary discounting measures v? on [0, 00] by v%([a,b]) =

éfod v(la +t, b+ t])dt. Note that dwd( t) and dwd( t) are continuous at each
t < oo and dwg( t) =0 - dw? (1) Therefore, ft dw“ (t) — —( )| dt =504 0.

As 42(t) is nonincreasing in ¢, f dw (p) - dut ()| dt ttf dw () du(3) gt <

S e gy de— [ () dt < w([ty, ty+d]). Similarly, [ (¢)— M (1] dt <
w5([t1, t1 + d]). Let d > O be sufficiently small so that w([tl, t1 +d]) < e, and

do > 0 be sufficiently small so that for all 0 < ¢ < &y, f:é |dw‘5 )——( )| dt <

e. Therefore, as |22 (¢) — L2 (1)] < |22 (1) — 248 (1) +] % (1) — 2 (1) +] L2 (1)

eaolt

tfdw[g dw
— (2 dt < 4
G = G <
0

Theorem 3 Let w be a nonstationary discounting measure on [0,00), t >
0, and v : A — R. Then a family (I's)sso that converges in data has an
asymptotic (w,t,v) value, and if ws, 6 > 0, are nonstationary discounting
measures on N that converge to w, and ms > 0 and vs : A — R are such
that (ms,vs) converges to (t,v) (as 6 — 0+), then for every € > 0 there
are e-optimal Markov strategies in I’g?g);”‘s that converge to a continuous-time
Markov strategy.

Before turning to the proof of the theorem, we introduce a useful auxiliary
lemma.
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Fix a payoff function ¢ : A — R and a transition rate function pu :
S x A — R with u(z',z,a) > 0if 2’ # z and ), ou(,2,a) = 0. Let
|ul == max( aealp(z, 2,a)|. For every z € S, a,8 > 0, V € RS, and
x € A(A(z)), F(z,z,a,8,V) is defined by

F(z,z,a,8,V) = ag(z,z) + V(2) + Z Bu(z', z,2)V (),

z'eS
and T'(a, 3,V) € RY is defined by

- 1o 2
T(a,5,V)(2) = zlgl)?f%z) 122}%9(,2)]:(2’36 ®x a,B,V).

Let Vi € R®, a, 3 > 0, and define V; € R¥ by V; = T(a, 3, V7). Given a
sequence ¥ = (0 =7y < ... < Y = 1), define U,,, 0 < j < m (recursively
in j) by Uy = U, = Vi, and for 0 < j <m and z € S, U, = T((vj41 —
Yi)et, (Vigr—5) B, Uy,.r). I d(7y) := maxo<jcm 741 —; is sufficiently small so
that d(v)5]|p]| < 1, I'(7) denotes the m-stage game with set of plays S x A™,
the payoff of a play 20,a0,...,2m 18 Vi(2m) + D ocjcm(Vit1 — 1) ag(2;, aj),
and past play is observed by the players, and the “states transitions” are
such that the conditional probability of z;.1 = z, given zo,ao,...,a;, is

IZj,z + (7j+1 - ’Vj)ﬁﬂ(za Zj, a’j)'

Lemma 3 Assume that Bl|p|| < 1/2. Then, 1) the game T'(7y) is well

defined and its value equals Uy, 2) the stationary strategy o of player 1
(respectively, T of player 2) that for every state z € S, o(z) mazimizes

mingze xz2(,) F(z, 0(2)@2%, , B, V1), (respectively, 7(z) minimizes maxiexi () F(z, 2'®
7(2),a, 8, V1)) is (48| pll (allg]| + 4B]|[l[[V1])-optimal in T'(v), and 3) [[Us —

Vol < 48| pl[(aellgll + 48|l [[VA])-

Proof. For every (zj,a;) € A, the condition d(v)f||p|| < 1 implies that
I, .+ (Vigr — 7)Bu(z, z5,a;) > 0, and in addition ) (L., . + (V41 —
v;)B(z, zj,a;)) = 1. Therefore I'(y) is well defined. The recursive formula
for the value of the m-stage game I'(7) shows that the value of I'(y) equals
Up.

For every strategy profile o in I'(y) and state z, P(zg = 21 = ... =

Zm) 2 Ho§j<m(1 — (Vir1 — v)Blpll) = 1 = Bllpll. Therefore, for every
Markov strategy profile o in I'(y) and state z,

E; Y (1 —)ag(z, ;) 2 ag(z,6(2)) — 26| llallgl,

0<j<m
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where 7(2) = > o< jcm (Vi1 — 7)o (2, 7).

Let 0! be a stationary strategy of player 1 in I'(y) such that for every
state z € S, 0'(2) maximizes min,zcy2(,) F(2,0(2) ® 2%, o, 3,V1). Then for
every Markov strategy o2 of player 2 in I'(7), inequality (1) implies that
Ses 1Pl = ) = L — Bl 2,5(2)| < 211 — 1 - 28] )] < 487,
where o is the strategy profile (o!,0?) and the last inequality uses the as-
sumption 25||u|| < 1. Therefore,

EZ <V1(Zm) + > (- ’Yj)Oég(Zj,@j)) > Vo(2) =28l (allgll+48| V)

0<j<m

Let 72 be a stationary strategy of player 2 in I'(7y) such that for every
state z € S, 72(z) minimizes maxiecx1(,) F(z,0(2) ® 2, «, 3, V7). Then, by
duality, for every Markov strategy 7! of player 1 in I'(y),

E;(Vi(zm)+ Y (1 =1)ag(z, a5) < Vol2) +28] ull(allgll + 481l V1),
0<j<m
where 7 = (71, 72).
Therefore, [|Us — Vol < 48]ull(allgll + 4B]|ull[[Vi]]) and o' and 72 are
(4Bl (allgll + 48[ 1V ]1))-optimal. O

Proof of Theorem 3. The first stage of the proof is obtained by associating
an extensive form /-stage game I'(#) with a finite sequence t = (ty = 0 < t; <
<t =t <tpp <...<t) of times (and the triple (w,t,v)) as follows.

The game I'(f) is an f-stage “stochastic game” with 1) the same sets of
states, actions, and players as in I's, 2) stage-dependent payoffs (that also
incorporate an extra payment in stage k), and 3) stage-dependent transitions.
Let A; :=t;;; —t; and let £ be such that d(#) is sufficiently small so that
d(t)||u| < 1/2. A play of T'() is a sequence (Z, o, - - -, Z) with @; € A(%)
and the payoff of the play (Zo, ao, - - ., 2¢) is v(Zy, &k)—i-Zf;é w;g(Z;,a;), where
wj = w([tj, tj1)).

Past play is observed by the players. Therefore, a strategy of a player
chooses his action at stage j = 0, ..., ¢—1 as a function of (2o, ao, - . ., Z;). The
conditional probability, given Zy, ao, ..., Z;,a;, of Zj11 = z is Aju(z, Z;,a;) +
I3, .. It is helpful to view the states transitions in I['(f) as those of an “exact”
stochastic game whose j-th stage duration, 0 < j </, is A;. The game I'(¢)
has a value V and the players have Markovian optimal strategies.
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The value V equals Vo, where V € R® are defined recursively for 0 < j <
(. For every z € S, Vy(z) =0, andforO<y<€wedeﬁneV( ) by

V;(Z) - xlren)?l)%z) 1‘2161}%%2) (1j:ky<27 x> + F(Z, S Aj’ ‘/jJrl)) ’
where z = ! ® 2. ) )

Note that for every j < f, [|[V}|| < Li—|lv|l + w;llgll + [|[Vjsall, where
|v|| = max(. q)ea |V(z,a)|. Therefore, by induction on 0 < ¢ —j < ¢, ||V} <
LicklWll + 22 wirllgll < [lvlf + w((0, 00)) gl

The Markov strategy & of player 1 in I'(¢) with 6(z,j) maximizing (over
all z1 € X'(2))

min <1j:ky(z,x1 ® %) + F(z, 7' @ 2, w;, A, ‘7j+1)>
22€X2(z)

is an optimal strategy of player 1 in I'(f). Indeed, for every strategy T of

player 2 in I'(t) and stage 0 < j < ¢,

E7 - (L=wv(3,a5) +wjg(Z5, a5)) = B3, <‘~/J(2]) - ‘7j+1(§j+1>> :

Therefore, by summing these inequalities over 0 < j < ¢, we have

E7, <V(5ka&k) + ) wﬂ(%a%)) > Vo(2).

0<j<e

The second stage of the proof is to associate with ¢, &, and § > 0, a
sequence ms = (mgo =0 < mg1 < ... < mgy), a Markov strategy os in I's,
and a nonstationary discounting measure ws, as follows.

For ms; < m < mgj11, o5(z,m) = &(z,7), for m > msy, o5(z,m) co-
incides with an arbitrary stationary strategy, mesy = ms, ms,; = [t;/6] for
J # k (thus dms ; —>5_>0+ t; for all 0 < j < ¢, ws(m) = ws(m) for m > my,,
and ws(m) = for ms; < m < ms ;41 and
Jj <.

Note that ws is a nonstationary discounting measure that converges, as
0 — 0+, to w.

Consider the family of games fg?g;”ﬁ with g5 = d¢g and ps = 0u. By Lemma
3, for every € > 0, there is a sufficiently small d > 0 such that if ¢ is such that
d(t) < d and w([ty,>0)) < d, then, for sufficiently small § > 0, the Markov

mes,j4+1—"M¢,;5 Zm5]<m<m5 j+1 w(s( )
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strategy o5 guarantees in fg’j;;;”& a payoff that is at least V —e. Therefore, for
sufficiently small 6 > 0, the Markov strategy o5 guarantees in Fg’?{%f‘; a payoff
that is at least V — 2¢.

Note that for sufficiently small 6 > 0, PZ(zp, = 2 Vm < mgy) > 1 —
d||p|| for every strategy profile o and state z. Therefore, if d||p|||Vi] <
g/4, for sufficiently small § > 0, for every strategy 7 of player 2, we have
B2y (Vilmg) + Yy Wsm)gs(zms ) = Vo(z) — 2l V5] = =/2 >
Vo(z) —e.

By Lemma 2, Zmzm&l
sufficiently small so that )

in I'{’>" a payoff that is at least V — 3¢ —¢l|g||. By the construction of oy,
os converges to a continuous-time Markov strategy.

Similarly, we associate with the Markov strategy 7 (and § > 0) a Markov
strategy 75 that for § > 0 sufficiently small guarantees in I'j"”* a payoff that

|ws(m) — ws(m)] — 0 as & — 0+. If § > 0 is

moms, |Ws(m) —ws(m)| < e, then o5 guarantees

» §
is at most V' + 3¢ + ¢||g|| while 75 converges to a continuous-time strategy .

O

4.3 The asymptotic limiting-average value

Recall that the family (I's)s~o has an asymptotic limiting-average value v if
for every € > 0 there are ¢y > 0 sufficiently small and strategies o5 and 75 in
['s, such that for every strategy pair (¢*,7%), every initial state z, and every
0 <9 < g, we have

e+ E?

as§,T

gy 2 () > —e + Bl 3. (19)

Theorem 4 A family (I's)sso that converges strongly has an asymptotic
limiting-average value.

Proof. Let g = lims 0y g5/0 and p = limg oy ps/d. As the function p —
v,(g, 1) is semialgebraic and bounded, it converges to a limit v as p —
0+. Fix € > 0. As every discrete-time stochastic game with finitely many
states and actions has a limiting-average value [5], which is the limit of its
p-discounted values as p goes to 0+, there are strategies o5 of player 1 and 75
of player 2, such that for every strategy pair (¢*,7*) and every initial state
z €8S,

8/2 + E§5,7*25 2 pl_igl_‘_ U5,P(Z) 2 _8/2 + Ei*,rggts' (20)
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As vs, — v,(g, p) uniformly in p, there is §y > 0 such that for every 0 <
§ < 0 and every state z € S, |vs,(2) — v,(g, 1t)(2)| < €/2. Therefore, for
0 <6 < 6o, |lim, o1 vs,(2) — v(2)| < /2, which together with (20) implies
(19). O

Remark 10 A family (T's)so that converges in data need not have an asymp-
totic limiting-average value.

For example, consider a game with two states and a single action for each
player in each state. The payoff in state one is 1 and in state 2 it is 0. State 2
is absorbing, i.e., Ps(1 | 2) = 0, and the probability of transition from state 1
to state 2, P5(2 | 1), equals 42 if § is rational, and it equals 0 if ¢ is irrational.
Then, vsp = 0 if ¢ is rational, and vso = 1 if § is irrational. Therefore vy
does not converge as ¢ goes to 0.

4.4 The asymptotic mixed discounting and limiting-
average value

For every positive measure ws on NU {oo}, I's,, is the game I's where the
valuation of a play (zo, ag, 21, ...) of I's is given by >~ ws(m)gs(zm, am) +
ws(00) limg_so gs(s), if the limit exists. Obviously, the limit need not exist.

We say that the two-person zero-sum game I's,,, has a value Vj,,,, if for
every ¢ > 0 there are strategies o5 of player 1 and 75 of player 2, such that
for every strategy 7 of player 2, strategy o of player 1, and initial state z, we
have

E;,. (wa(OO)g5 + 3 ws(m)gsm, am>) > Vi () — €
m=0

and

B, (w(oo)% 3 ws(m)gs e, am>> < Vg (2) + 2.
m=0

Theorem 5 IfI's converges strongly and the nonstationary discounting mea-
sure ws converges to a positive measure w on [0,00], and ws(co) converges
to w(oo), then Vs, converges.

Proof. The proof is obtained by collating the result of Theorem 3 with the
result of Theorem 4. Let 0 < ¢ < 1. Let 0 < t < oo be sufficiently large
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so that 2w([t, 00))]||g|| < €, and let w; be the restriction of w to the interval
[0,t). Let v be the asymptotic limiting-average value of the family (I's)s=o,
and define v : A — R by v(z,a) = w(oco)v(z). The family (I's)s=o has an
asymptotic (wy,t,v) value V.

Assume that the nonstationary discounting measure ws converges to w
and w;(oco) converges to w(oo). Let ms = [t/d] and let ws, be the restriction
of ws to {0,1,... ,ms}.

The value Vm“ " of the game Fm‘s’ converges to V. Recall that as I's con-
verges strongly, the hmltlng—average ’Value of the game I's, which is denoted
by vs,, converges as ¢ goes to zero to v. Let dy be sufficiently small so that for
0<d <o, 1) V52" =V <e,2) [luso —v|| <eg, 3) ||lws(oo) —w(oo0)|| < e,

6w5t

and 4) [|g[| >, ws(m)| <e.
Let o5 follow an optimal strategy in Fgfu’; up to stage mg, and thereafter

it “restarts” with an e-optimal strategy in the limiting-average game I's. It
follows that for every 0 < § < §y and strategy 7 of player 2,

B ( 00)gs + Z ws(m)gs(zm, am)> > V(z) — ew(oc0) — 3e.

Similarly, if 75 follows an optimal strategy in I'{’>"” up to stage ms, and

thereafter it “restarts” with an e-optimal strategy in the limiting-average
game ['s, then for every 0 < § < 9y and strategy o of player 1,

EOZ'T[; ( 95 + Z w(5 g(5 Zms a’m)) < V(Z) + EU)(OO) + 3e.

4.5 The asymptotic uniform and w-robust value

Theorem 6 An exact family of two-person zero-sum games I's has an asymp-
totic uniform value.

Proof. Let v = lims_,04 vsp. It is sufficient to prove that for every ¢ > 0
there are 1) a duration &y > 0, 2) strategies o of player 1 and 75 of player 2,
and 3) a positive real number s., such that for every strategy 7 of player 2,
strategy o of player 1, 0 < § < dp, and s > s. we have

EZ,+95(s) Z v(z) — ¢, (21)
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and
E} ,.95(s) S v(z) +e. (22)

g

By duality, it suffices to prove (21).

Let A = max{|g(z,a)| : (z,a) € A}, and g5 = dg.

The first step is to show that for an exact family I'y the following property
holds. There is an integrable function 1 : [0,1] — R, and dy > 0 sufficiently
small such that for 0 < p < p/ <1 and 0 < § < g, we have

0
- / b(z) d. (23)
0

The second step is to show that if the family I's; of two-person zero-
sum games satisfies the above-mentioned property, then it has an asymptotic
uniform value.

We start with the first step. Fix the payoff function g and the transition
rates p1. By the covariance properties, Vs, = V,s5(0g,0p) = V,5(dg, (1 —

PO)o1) = s Vs (9, 1) = 1255V (9, ). Therefore,

(1—pd)

Vs,p = ,Ui(lfpé) (gv ILL)
The function p — v, := v,(g, ) (is semialgebraic and thus) has a convergent
expansion, v,(z) = Y r, cx(2)p*/ % (where K is a positive integer), in a right
neighborhood of 0. Therefore there is 1/2 > py > 0 such that its derivative,

v, (2) = dipvp(z), exists in the interval (0,2po], and its absolute value is

bounded by a positive constant C; times p'/5~1. Therefore, for § < 1/4,

. . d . L
the derivative P of the function (0, po] 3 p — CREVEENSS S . (g, 10)

equals mv’( . thus, it is bounded (in the interval (0, po]) by a positive

constant Cy times pY/%~1. (E.g., C, = 2C;.) The function p +— v;, is
(2A/po)-Lipschitz in p in the interval (po, 1] (||vs, —vsel| < 24|p—0|/p, e.g.,
by [5, Lemma 4.2]). The function ¢ that is defined by 1 (z) = 2C,2"/%~ for
0 <z <pand ¢(x) =2A/py for 1 > = > py is integrable and satisfies (23).

We turn now to the second step. Let I'y; be a converging family, ¢ :
[0,1] — R, be an integrable function, and dy > 0, such that for 0 < p < p’ <
1 and 0 < 0 < o, inequality (23) holds.

Fix ¢ > 0 and w.l.o.g. we assume that 0 < e < A. Fix g > 0 and A\g > 0
sufficiently small so that for 0 < 6 < dp and 0 < p < A, [Jvs, — v|| < e.
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Fix 0 < 0 < dp. We apply the proof of the existence of a value of the
discrete-time stochastic game (dg,0p), [5, Section 2]. In what follows we
define a strategy oy of player 1 in I's. We will define a sequence (pg)_, so
that pj is a function of the past history up to stage k[1/0], i.e., measurable
with respect to the o-algebra Fj, := Hypi/5) where [x] stands for the largest
integer that is < x. The (p)52, strategy os of player 1 is to play a stationary
optimal strategy in I's ,, at stage k[1/6] <m < (k+1)[1/4]. Let

Y = Z (]_ — (5pk>m_k[1/6}6g(2m, am)
k[1/8]<m<(k+1)[1/9]

T = Z 09(Zm, am), and
k[1/8]<m<(k+1)[1/9]

2k = Zk[1/4)-

For every strategy 7 of player 2, we have

Eam(/)kyk +(1— 5Pk)[1/6]"06,pk(5k+1) | Fr) > U&pk(?k)-

Note that for every € > 0 there is A\g > 0 and dy such that for 0 < p, < Ao
and 0 < d < dy we have

> (1= 0p)™ =115 pr + (1= 5p1) /% = (1= pi)| < epi/A.
k[1/6]<m<(k+1)[1/6]

It follows that for 0 < § < dg and 0 < p, < Ag we have

Eos (5,0, (k1) — Vo, (Zk) + pr(Tr — V5. (Zh11)) | Fi) = —epe (24)

for every strategy 7 of player 2. Now one follows the proof of [5, Section 2] by
replacing inequality [5, (2.1)] with inequality (24). The index ¢ in [5, Section
2] is replaced by our stage index k (\; by pg, vx by vs,, and z; by Z).

With these substitutions, inequality [5, (2.15)] becomes

Zxk > ng7pk(2k+1) + S, — So — QAZ I(sgr1 = M) — 4ne. (25)

k<n k<n k<n

Note that the term —epy in inequality (24) does not appear in [5, (2.1)].
It impacts inequality [5, (2.9)] as —epx needs to be added to its right side.
Therefore, we have to replace [5, (2.9)] with E(Yx41 — Y | Fr) > €pr (where
E stands for E,, ;), and therefore E#{k : p, > n} < % (rather than < %‘
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in [5, (2.12)]). Therefore, EY ", _ I(sp41 = M) < e/\?M) and therefore for n
sufficiently large £, _, I(sp41 = M) < en/(24A).
For § and p sufficiently small, |[vs, — v|| < e, where v = lims_,ovsp.

Therefore, inequality (25) implies that

Egs . Z x> nu(zg) — 3en — sg — en — 4ne. (26)

k<n

O

Remark 11 Note that the inequality EY, _ I(sp11 = M) < ﬁ (in the
above proof ) implies that Y, _  I(sx+1 = M) is finite a.s. Therefore,

o] |
EU(S’T(hTIngf - Z 9(Zm, am)) = E(,B,T(hrrggf - ;xk) > v(zg) — Te.
m<n <n

This shows that the above-constructed strateqy os of player 1 is approximate
optimal in both the uniform game and the limiting-average game. Therefore
an exact family of two-person zero-sum games I's has an asymptotic 1, -
robust value.

Theorem 7 For every nonstationary discounting measure w on [0,00], an
exact family of two-person zero-sum games I's has an asymptotic w-robust
value.

Proof. 1f w(co) = 0 then an asymptotic w value is a w-robust value. There-
fore it suffices to prove the result for w with w(oo) > 0. For every 8 > 0,
the family (I's)s~o has an asymptotic w-robust value if and only if it has an
asymptotic Sw-robust value. Therefore, we may assume that w(oc) = 1.

Let v be the asymptotic 1,.-robust value of the exact family (I's)s>o. Fix
e > 0 and let 75 be a family of strategy profiles that are e-optimal in the 1..-
robust game. Let ¢ = t. < oo be sufficiently large so that w([t,00) < €/||g]|.
The family (I's)s>o has an asymptotic (wy,t,v) value v., where w; is the
restriction of w to the interval [0,t). Let ms = [t/d] and let 75 be a profile of
strategies that is optimal in Fgﬁgﬁ, where ws; is the nonstationary discounting
measure that satisfies ws(m) = w([md, (m+1)J)) if m < ms and ws(m) =0
otherwise.

The strategy profile o5 follows the strategy profile 75, in stages 0 <
m < mgs and in stage ms starts following the strategy profile 75 (explicitly,

05(2(), agp, - .-, Zm5+k) = 75(zm5, Ce ,Z’m§+k)).
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Then for every player i, all strategies 7¢ (§ > 0) of player 4, and all
nonstationary discounting measures ws on NU{oo} that converge (as & — 0+)
to w, we have

2e + hfgéilf Ea;,fgg(;(WS) > v.(2) > -2+ llégéilf Efg’ggyg(g(w(s).

A limit point (as € — 0+) of v. is an asymptotic w-robust value of the
family (F5)5>0. ]

5 Non-zero-sum stochastic games with short-
stage duration: the discounted games

5.1 The asymptotic discounted equilibrium

Fix the sets of players N, states S, and actions A, and let I's = (N, S, A, gs, ps)
be a stochastic game whose stage payoff function gs and transition function ps
depend on the parameter 0 > 0 that represents the single-stage duration. Let
I's, be the (unnormalized) discounted game I's with discount factor 1 — pd.
We say that pair (V, o), where V € RV*S is a payoff vector and ¢ is a strat-
egy profile, is an asymptotic p-discounted e-equilibrium of (I's)ss¢ if for every
§ > 0 sufficiently small, every player i € N, every strategy 7¢ of player 7 in
['s, and every state z,

—e+ B i > (1=09)" G5 (Zmy am) < VH(2) < Bf, > (1=6p)™ g5(2m, )+
m=0 m=0

The pair (V, o) is an asymptotic p-discounted equilibrium if it is an asymptotic
p-discounted e-equilibrium for every € > 0. It is called an asymptotic p-
discounted stationary c-equilibrium, respectively an asymptotic p-discounted
stationary equilibrium, if, in addition, o is stationary.

Theorem 8 FEuvery converging family (I's)sso has an asymptotic p-discounted
stationary equilibrium.

Proof. Let o be a stationary strategy and V, € RV*% such that for every
z€S,1€ N, and a' € A(z), we have

PV (2) = g(z,0(2) + Y ulz z,0(2))V (),

z'eS
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and
PV'(2) > g'(z,0(2) ) + ) (2, 0(2) 7 a)V (),
z'eS
The existence of such a pair (V, o) follows (as in the proof of Theorem 1) from
the existence of stationary equilibria in discounted discrete-time stochastic
games; alternatively, see, e.g., [8].
Let 7% be a strategy of player 7. Fix an initial history h,, = (20, ag, - . - , Zm),

and let ¥, = 0(2), 2\, = 7' (hy), and z,, = 07 (2,,) ® 2° . Let

Yoo = Esg (65(zms am) + (1= pd)V, (zmi1) | b))
= gg(zma ym) + (1 - p(S) Z P&(Zl ’ Zms ym)‘/Z(Z,)>

z'eS
and
Un = Esg-izi (95(2ms am) + (1 = po)V, (2m41) | hn))
= G5(zm Tm) + (1= p0) > Ps(2' | zn, 2m) V) (2).
z'eS

It follows that

Yoo = 00" (Zmtm) + > 0p(2 2, ym)VI(Z) = 6V (2m) + VY (2m) — 0(5)
z'eS

> Vi(zm) — o(6).

Therefore,
Ejy Y (1= p0)"g(zms am) = V' (20) = 0(8) Y (1 = p8)™ =504 V' (20)-
m=0 m=0
Similarly,

Un < 09 (zm,am) + Y 6p(2, 2, 2)VH(Z) = p0V' (2m) + VV(2) + 0(5)
Z'es

< Vizm) + 0(0).

Therefore,
Eg,cr*i,ri Z(l - p(;)mgg(zm, am) < VZ(Z) + o(9) Z(l —pd)"™ =504 Vi<z)‘
m=0 m=0
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We conclude that for sufficiently small 6 > 0 we have

_5—|—E§70_17T1~ Z(l_pé)mgfg(zm?am) < VZ Z (I—=pd)™ g5 (Zm, Qm) €.
m=0 m=0

O

Remark 12 The conclusion of Theorem 8 (as well as its proof) holds also
for the model with individual discount rates F = (p;)ien-

Covariance properties. Fix o, 8 > 0. A point (z,V) € X cgien(X(2) X

[—11g%Il/p, l19°]]/p]) is a stationary equilibrium (strategies and payoffs) of the

continuous-time p-discounted game I' = (N, S, A, g, ) if and only if (z,V)

is a stationary equilibrium of the continuous-time ap-discounted game I' =

(N, S, A, ag,ap), and given 0 < p < 1 and |u|| < 1 — p, if and only if
it is a stationary equilibrium of the discrete-time p-discounted game I' =

(N, S, A, g,p), where p is the transition probability that is given by p(2’, z,a) =
1%p,u(z’, z,a) for all 2/ # z.

5.2 The asymptotic discounted minmax

Fix the sets of players N, states S, and actions A, and let I's = (N, S, A, gs, ps)
be a stochastic game whose stage payoff function gs and transition function
ps depend on the parameter d > 0 that represents the single-stage duration.
The (unnormalized) p-discounted minmax of the discrete-time game I's is
defined as the (uncorrelated) minmax of the discrete-time stochastic game
I's with discount factor 1 — dp. It exists and is denoted by V;,. We say
that V, € RV*9 is the (unnormalized) asymptotic p-discounted minmazx of
the family (I's)s>o if V5, =V, as 6 — 0+.

Using arguments analogous to those used in earlier sections, it follows
that 1) V5, = (V5 p( 2))(i,-)enxs is the unique solution of the following system
of [N x S| equalities,

6pVi(z) = min  max gi(z,27'®z")+(1-dp) Zpg(z',z,x_i®xi)vi(z’),

zieX Ti(2) e X(2) prper’

where X7/(2) := x;4X"(2), 2) a family (I's)s>0 (I's = (gs,ps) for short)
that converges to (g, 1) has an asymptotic p-discounted minmax V,, and 3)
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V, = (V}(2))(i,:)ens is the unique solution of the system of | N x S| equalities,

pV'(z) = min max g(z, v ' ®z") + Z w2z, a7t @ V().
rteX Tt xteX(z) ves

The normalized p-discounted minmax values are v, = pV, and vs, = pVj .
The semialgebraic and covariance properties of the value of zero-sum games
hold for the minmax value of non-zero-sum games as well.

In particular, for fixed g5, ps, g, and p, the maps p — v, and p — v;, are
bounded semialgebraic functions, and thus have a limit as p — 04, the maps
p+— V, and p — V; , are semialgebraic, vs,(gs, ps) = v,(9s/0, (1 — pd)ps/d),
inequality (16) holds, and if I's = (gs, ps) converges strongly to I' = (g, ),
then v, converges, as 6 — 0+, uniformly in p.

O

5.3 The asymptotic equilibrium of nonstationary dis-
counting games

The following theorem is a generalization of Theorem 3 to the non-zero-sum
case. Its proof is analogous to the proof of Theorem 3.

Theorem 9 If 1) (I's)sso is a family that converges in data, 2) W is a
nonstationary discounting N -vector measure on [0,00), 3) t € R, and 4)
v:A—RY then the family (Us)sso has an asymptotic (E), t,v) equilibrium
payoff v. If 1) E)(; 18 a nonstationary discounting N -vector measure on N
that converges to ﬁ, and 2) 0 < ms € N and v : A — RY are such
that (mg,vs) —s—ox (t,V), then, for every € > 0, there are Markov strategy
profiles o5 and 6g > 0 such that 1) for every 0 < § < &y, o5 is an e-equilibrium
of Fg%;:‘s with an equilibrium payoff within € of v, and 2) o5 converge w* to
a profile of continuous-time Markov strategies.

6 Non-zero-sum stochastic games with short-
stage duration: the limiting-average and
uniform games

Fix the sets of players N, states S, and actions A, and let I's = (N, S, A, ps, gs)
be a stochastic game whose stage payoff function gs and transition function
ps depend on the parameter 6 > 0 that represents the single-stage duration.

48



For every strategy profile ¢ in I's we set
’735(21’ U) = Eg,a gclﬁv and zg(zv U) = Eg,a Qf;

6.1 The asymptotic limiting-average and uniform min-
max

We say that the vector v € RV*S is the asymptotic limiting-average minmazx
of the family (I's)s~o if for every € > 0 there is 6y > 0 such that for every
player 7 and 0 < § < &y, 1) there is a strategy profile 05! of players N \ {i}

19
such that for every strategy 7 of player i and every state z € S,

Y5z, 0557 <0'(2) + e,

and 2) for every strategy profile o5 of players N \ {i} there is a strategy 7
of player 7 such that for every state z € .S,

Zg(zvagiaTi) > Ui(’z) - &

We say that the vector v € RV*9 is the asymptotic uniform minmaz of
the family (I's)s=o if for every € > 0 there are ¢y > 0 and so > 0 such that
for every player i and 0 < § < dy, 1) there is a strategy profile a(;;' of players
N\ {i} such that for every strategy 7 of player 4, state z € S, and duration
S > Sg,

B gi(s) <vi(e) +e,

and 2) for every strategy profile o5 of players N \ {i} there is a strategy 7°
of player i such that for s > s,

B, ghls) 2 v'(2) — <.

We say that the vector v € RN*% is the asymptotic robust minmaz of the
family (T's)so if for every € > 0 there are §y > 0 and sg > 0 such that for
every player i and 0 < § < dy, 1) there is a strategy profile oé_é of players
N\ {i} such that for every strategy 7° of player i, state z € S, and duration

s > S,

B g5(s) Sv'(z)+e and  Fj(z,050,7) < 0'(2) +e,
8,7 ’
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and 2) for every strategy profile o' of players N \ {i} there is a strategy 7°
of player i, such that for every state z € S and duration s > s,

E*; .g5(s) >v'(z) —e and vg(z,agi,Ti) >0'(2) —e.
= 7

Theorem 10 A family (I's)sso that converges strongly to T' = (u, g) has a
limiting-average minmaz v : S — RN, which is the limit of pV, as p — 0+,
where V, is the unique solution of the following system of equalities:

pV'(z) = min max (gi(z,w’}yi) +> (e 2z y")V"(Z)> , Vie N,z€ 8.

x—'L T
Y z'eS

If the family is exact it has an asymptotic robust minmax (and therefore an
asymptotic uniform minmax as well).

Proof. The proof that a family that converges strongly has an asymptotic
limiting-average minmax is analogous to the proof of Theorem 4. Let 05 =
lim,_,04 vs,p-

As every discrete-time stochastic game with finitely many states and
actions has a limiting-average minmax [5, 7], which is the limit of its p-
discounted minmax as p goes to 0+, it suffices to prove that lims_ oy Us
exists.

As mentioned in the last section, if (g5, ps) converges strongly, then v,
converges to v,, as 6 — 0, uniformly in p. Therefore, for every ¢ > 0 there
is 61 > 0 such that for 0 < §,6" < §; we have ||vs, — vy ,|| < €, and therefore
|05 — V5| < e.

The proof that an exact family has an asymptotic minmax is analogous
to the proof of Theorem 6.

OJ

6.2 The asymptotic limiting-average equilibrium

We say that u = (u'(2))ien,zes € RY* is an asymptotic limiting-average

e-equilibrium payoff of (I's)so if for every 6 > 0 sufficiently small there is a
strategy profile o5, such that for every player i € N, strategy 7¢ of player 1,
and state z,

—e+75(2,05",7) < w'(2) < 7i(2,05) F €.
Note that it is an asymptotic limiting-average equilibrium payoff if it is an
asymptotic limiting-average e-equilibrium payoff for every € > 0.
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Remark 13 Note that the existence of a limiting-average equilibrium, re-
spectively e-equilibrium, payoff in each one of the games I's does not imply
(and is not implied by) the existence of an asymptotic limiting-average equi-
librium, respectively e-equilibrium, payoff of the family (T's)s>o-

Remark 14 If u. € RY*S s an asymptotic limiting-average ¢-equilibrium
payoff of the family (U's)so and u € RN* then u is an asymptotic limiting-
average €'-equilibrium payoff of the family (Us)s whenever &' > ¢ + ||u —
uel|.  Therefore a limit point, as § — 0+, of asymptotic limiting-average
e-equilibrium payoffs is an asymptotic limiting-average € -equilibrium payoff
whenever &' > e, and a limit point, as e — 0+, of asymptotic limiting-average
e-equilibrium payoffs is an asymptotic limiting-average equilibrium payoff.

Two related equilibrium concepts are the lim sup and the lim inf equilibrium
payoffs. We say that u = (u'(2))ien, .es € RY*S is an asymptotic lim sup
e-equilibrium payoff, respectively an asymptotic liminf e-equilibrium payoff,
of (I's)s>o if for every 6 > 0 sufficiently small there is a strategy profile oy,
such that for every player i € N, strategy 7 of player i in I'5, and state z,

—e+75(2, 05", 7") < u'(z) < 74z, 05) + ¢,

respectively . o ' '
—€+ ’_yg(z, o, ', 7") <u'(z) < f_yg(z, os5) +e.

The corresponding strategies o5 are 2¢-equilibrium strategies of I's with the
lim sup, respectively lim inf, payoff function.

We say that u = (u'(2))ien, .cs € RV* is an asymptotic limsup equilib-
rium payoff, respectively an asymptotic liminf equilibrium payoff, if it is an
asymptotic limsup e-equilibrium payoff, respectively an asymptotic lim inf
g-equilibrium payoff, for every ¢ > 0.

Remark 15 Obuviously, an asymptotic limiting-average equilibrium payoff is
an asymptotic limsup and an asymptotic liminf equilibrium payoff. How-
ever, there are stochastic games with countably many states that have both an
asymptotic limsup equilibrium payoff and an asymptotic liminf equilibrium
payoff, such that, moreover, both payoffs coincide, but have no asymptotic
limiting-average equilibrium payoffs.
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Remark 16 [t is unknown whether every stochastic game with finitely many
states and actions has a limsup, respectively liminf, equilibrium payoff. In
particular, it is unknown whether every stochastic game with finitely many
states and actions has a limiting-average equilibrium payoff.

Theorem 11 A family (T's = (gs,ps))s>0 that converges strongly to T' =
(g, ) has a limiting-average equilibrium payoff.

Proof. Let (I's)s=o be a family that converges strongly to I' = (i, g). Then

195(2, @)—69+ (2 )| = 0(3), and therefore | .. . 942 o) S 69 (2, )| <
max, , |gi(z,a)—0g%(z,a)|/6 = o(1) as § — 0+. Therefore, it suffices to prove

the theorem for the special case where gi = d¢'. Note that in this special

case

Y ) = e 3 ) = Y o)

o<m<n 0<m<n 0<m<n

Therefore, gi and g_]g, as a function of the play zy,ayo,..., are independent
of §. Therefore we write g* and gi for short for gi and gfs. Without loss of
generality we may assume that 0 < ¢* < 1.

By Remark 14, it suffices to prove that for every € > 0 there is a vector
u € RV*S that is an asymptotic limiting-average e-equilibrium payoff.

Fix e > 0 and let u and o be, respectively, the uniform (and limiting-
average) ¢/8-equilibrium payoff and the uniform (and limiting-average) /8-
equilibrium strategy of the continuous-time stochastic game I' = (N, S, A, i, g)
that are constructed in [8]. In particular, for every state z € S, player i € N,
and strategy 7 of player i, we have

u'(z) +¢e/8> EZg' > EZg’' > u'(2) — ¢/8, (27)

where g' = limsup,_,, 1 [ g'(2, ) dt and ¢' = liminf, o 1 [ g (21, 2¢) d,
and
i_i,ﬂ-gi < UZ(Z) + 6/8 (28)
These inequalities follow from (u, ) being a limiting-average £/8-equilibrium
payoff and strategy profile. (An additional property that follows from the
special construction of ¢ in [§] is that g’ = ¢g* P? a.e.)
Let v : S — R be the limit of pV, as p — 0+, where V, is the asymptotic
p-discounted minmax. Recall that V, is the unique solution of the following
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system of equalities:

pV'(z) = min max (gi(z,x_i,yi) + Z Wz, 2,07t ® yZ)V’(z)) , Yie N,z e€S.

z*'l X2
Y Z'es

As the strategy profile o (that is constructed in [8]) is a discretimized strategy
(namely, there is a strictly increasing sequence of continuous times ty = 0 <
t1 <ty < ..., such that t, —/,_, 0o and the mixed-action profile selected
by o at time ¢, < t < ty;1 is a function of the play up to time ¢, and the
state at time t), it follows that for every ¢’ > 0 and for every player i there
is a strategy 7/ such that v'(z) — &’ < Ei,iﬂ-/g" (< Ez—iﬂ_z‘/gi)- Therefore,

the inequalities u'(z) +¢/8 > EZ,  g* > v'(z) — & hold for every &' > 0.

Therefore, _ A
u'(z) > v'(z) — /8. (29)

We will prove that u is an asymptotic limiting-average e-equilibrium pay-
off of the family (I's)s~o. The construction of the corresponding limiting-
average e-equilibrium strategy profile o4 is analogous to the construction of
o in [8]. The continuous-time pure-action strategy profiles 7 and 7, which
are used in [8] in the definition of o, will be adapted to the discrete-time pure
strategies 75 and 75 respectively.

The continuous-time pure-action strategy profile 7 obeys the following
property. There is a sequence of continuous times 7 : 0 =ty < t; < ... (with
tk — k0o 00) such that for ty < ¢ < tx4q1, T(h,t) is a function of ¢, z;, and
the finite sequence of states 7k = (21, ..., 21, ). Therefore, for t;, <t < tpy1,
we can write 7( 2y, 2, t) for 7(h,t).

The corresponding discrete-time pure strategy 75 will be such that there

is a sequence of stages 7° : 0 = nso < ... < ngx < ...such that 1)
sk —rs—0+ tr, 2) for ngp < m < ngpi1, 75(20, a0, ..., 2m) is a function of
m, zZn, and the finite sequence of states 72 = (Zng gy - - - » Zng . ); thus we can

write ?5(72, Zm,m) for 7(zo,ag, ..., zn), and 3) for fixed ) = 72 c Sk+l,
the map [nsk, nsg+1) > m +— ?5(72, Zm,m), which (given 72) is a Markov
strategy on this interval of stages, converges w* to the (given ?k) Markov
strategy [tk, tk+1> S5t — 7_'(7]“ 2, t).

This relation between the continuous-time strategy 7 and the discrete-
time strategy 75 implies, by inductive application of Proposition 2, that for
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every state z and every positive M,

7 = z 1 7 7 =
'Y&M(Za 75) = Eﬂ;m o ;M/(ﬂ g (Zma am) 760+ 7M(z7 T)v

where
‘ 1 M
ale7) = B [

and [*] stands for the largest integer that is less than or equal to *.

Definition of 75. We map the discrete-time sequence of states zg, 21, . . .
to a continuous-time (step-function) list of states: for any nonnegative real
t > 0 we define zs5; = 2/5. Next, we define the profile of strategies 75 in I's
by Ts(20, Gmy - -+ Zm) = T((26.4)t<ms)-

Properties of 75. Recall the definition and properties of the positive
integer Ny, the sufficiently small €, > 0, the disjoint subset of states, Sy, So,
and S, and the pure-action strategy profile 7 (that were constructed in [8]).
One of the properties of 7 is that for every z € S; and 2z, € C, = {2 €
S| wv(z) =wv(2)} for all s <t, u(SU(S\ C.),2,7) = 0. Therefore, by the

definition of 75 we have
Pi(zn€C.\S)=1 Vze S, m>0. (30)
The following inequality® is proved in [8]. For z € S, for every player 4,
Ve (2, T) 2 0'(2) — /T,

and therefore, for sufficiently small § > 0,
Vo.x0 (2, T5) = v'(2) — £/6. (31)

Definition of 75. We define a stopping time mgs = ms(29, ag, 21,...) as
follows. On 2y € Sy, ms = [No/d]; on 29 € S, ms = [1/5]; on 2y = z € Sy,
ms =min({m:m = [j/d],j €N, and 2,, ¢ C.\ S}U{[No/d]}). Define my, s,
k > 0 inductively: mos = 0 and mpi1,5 = Mis +Ms(2my 55 Gy 5> Zmg 5415 - - -)-

The strategy profile 75 is defined as follows.

75(20, 0, - -+ Zm) = To(Zmysr Zmpsr -+ -5 Zm) A Mg s < <My s

6The € in [8] is £/8 here, and &, there is sufficiently small.
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Properties of 75. We define the sequence of states z9, k > 0, by zJ =
Zmy.s- Note that this definition is analogous to that of the sequence of states
Ze, k > 0, in [8]. Let F?, respectively F', be the transition matrix of the
homogeneous Markov chain z3, 22, ... with its P~ distribution, respectively
20, 21, - . . with its PZ distribution.

By the strong data convergence of (dg,ps) to (g,un), ps(z’,z,a) > 0 if
and only if u(2’,z,a) > 0. Therefore (for § > 0 sufficiently small) F’ j,z’ =0
it and only if F, . = 0, and thus the ergodic classes of states of the two
homogeneous Markov chains, the one with transition matrix F° and the
other with transition matrix F', coincide.

Let £ denote the set of ergodic classes of states, and for £ € £ we denote
by ¢F and ¢ the F° and F invariant measures that are supported on E, and
¢ (E) (respectively ¢*(E)) denotes the probability of the F°-Markov chain
(respectively F-Markov chain) with initial state z entering the ergodic class
E. Recall that every ergodic class F € & is a subset of S, and on z5 € S}
we have ms = [Ny /d]. Therefore,

Elg =FE.g = Z% Z% 2)V.n0 (2, T5)

Ee& zeE
Similarly,
E;_Z:E;’_Z:Zq Zq 2) Yo (2, 7).
Ee& zeE

In addition, by Proposition 2 and the w* convergence of 75 to 7, F° — F
as 6 — 0+. Therefore, ¢i(E) =504 ¢°(E) and ¢Ff —s50+ ¢F. Since for all
2€ S8, Fe&, and 2/ € E, we have

(GG (B), qf (), Vin, (2, 75)) —omos ((E), ¢ (), A, (7 7)),

we deduce that
EZg =FE.§ —soo0r EZg' = EZg’

Therefore, for sufficiently small 6 > 0 we have
u'(z) —e < EZg' = EZg <u'(z)+¢/6. (32)

Recall the definition of 7, €; and 7 in [8], where it is proved that for every
z € S, every player i, and every stopping time T, E*v'(27) > v'(2) — £1/2.
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Therefore, for every z € 53, 3.5 F,.v'(2') > v'(2) —e1/2. For z € S;U S,
Y veg Fozv'(2') = v'(2). Therefore,

) . €
Z Foov'(2) 2 0'(2) - Ellzesgué‘a
Z'eS

where 1, is the indicator function of *. In addition, if we replace the symbols
§ and ¢ in [8] with the symbol 7 and £/8, it can be seen that for &1 < nd*>5

327
E lekfésl - d2

and therefore for e < 1 and &; < nd?S 135 (< nd?5),

pe% 1 128

E? 12 < nd =¢/8.

Therefore, for sufficiently small ¢,

el Bz Z 1z,¢s, <¢€/6.
k=0

2¢
Assume that e < 1 and g1 < nd 5 128

Lemma 4 For sufficiently small 6 > 0, for every stopping time T we have

EZ vl < EZvl +¢€/6, (33)

TS OO

_ P i ‘ - i pz
where vy, = v(zy) and vl, = limsup,, . v;, (which equals lim,, . v, PZ
a.e.), and

EZ 1rcooty < EZ1pcoovly + /6 < EZ1rcog’ + /3. (34)

Proof. The strategy 7 defined in [8] obeys v'(27) < EZ(v'(27/) | Hr) + €1/2
for all finite stopping times T' < T”. Therefore, for all stopping times T <
T' < Ny, E?v'(2r) < E*0'(2p0) + &1/2, and EZv'(27) < EZ0'(2p0) + 3e1 /4.
For z € S; we have, v(z,) = v(z) for all m < ms, PZ a.e. Therefore, for
sufficiently small 6 > 0, for every stopping time 7' < ms (in the discrete-time
game), we have

E:(SU%« = E%U EZ 1(21) + 511z¢51
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Therefore, for § > 0 sufficiently small, for every stopping time 7',

oo
EZvh < EZvi, + B2 1sgs < EZvl +¢/6.
k=0

This completes the proof of inequality (33).
Since 17— ooV = 1r—ooVoo Pfs a.e., we deduce that

E7Z'5 1T<OOUT = Eﬁé 1T<oovoo + 5/6 (35)
By inequality (31) we have v}, < g' +¢/6, P2 a.e. Therefore,
Ei[; 1T<oov<i>o S Ei(s ]—T<oogi + Z':/67

which together with (35) implies (34). O

The punishing strategies. Recall that v : S — RY is the asymptotic
limiting-average minmax of the family (I's)s>¢. It follows that for every e > 0,
z € 5,1 € N, and ¢ sufficiently small, there is a strategy profile O';; of players
N\ {i} such that for every strategy 7" of player ¢ we have

V5(2, 050, T") 1= E;Gg;,ﬂgz <v'(z)+¢/3.

The limiting-average c-equilibrium strategy os;. The strategy pro-
file o5 follows the pure strategy profile 75 as long as the play coincides with
a play that is compatible with the strategy 75, and reverts to punishing (in
the limsup game I's) a deviating player. A formal definition of o follows.

Let ks be the the first stage m with a,, # 7s5(z0, a0, ..., 2m); ks = oo if
Ay = T5(20, A, - - ., 2m) for every m > 0. Fix an order of the player set N,
and on ks < oo let i5 be the minimal player 7 with aj # 75(z0, ao, - . . , Zk;)-
For every player i € N,

75 (20, @0, - - -, Zm) if ks >m

Ugi(zo,ao, ey Zm) = {

—q . . .
Ose(Zhst1, st1y - -5 2m)  if ks <m and i = is.

To complete the definition of the strategy profile o5, there is a need to define
0%(20, a0, - - -, 2m) on ks < m and i = i5. However, this has no impact on the
reasoning that follows. We therefore define it arbitrarily.

Let 7% be a pure strategy of player i. Note that (agi, 7%) is a pure strat-
egy profile. Let ns be the stopping time of the first stage m such that

o7



(20, 0y - - -y Zm) # Ti(20,00,--.,2m). Note that for every state z, with
Pz, .-probability 1, ks = ns, and is = 7 on ks < oo. Let H,, be the
7—6 \T

o-algebra generated by all (2,,)m<ns and (am)m<n;-

i

36)
37)

§i<z7o-(5_i77—i) = Ezfiﬂ.ig

Os

oy T oyt

(

(
= B i(lng=oo + Inscod) B i (5" | Hny) (38)
= Bl ln=e§ + B dngcoo B0 (5" [ Hay) (39
< Bl ln=eo '+ B lngcoo V' (2nge1) + /3 (40)
< B Lus—s g+ Ejgiﬁilné@o V' (2n) +€/2 (41)
< Eg +5¢/6 (42)
< u(z)+e. (43)

(

Equality (36) follows from the definition of 4'(z, 05", 7). Equality (37)
follows from one of the basic properties of conditional expectation: that the
expectation equals the expectation of the conditional expectation. Equality
(38) follows from the rewriting of the constant function 1 as the sum of the
two {0, 1}-valued functions 1,,,—~ and 1,,<~. Equality (39) follows from the
facts that 1) the expectation is additive, 2) 1, is measurable with respect
to o-algebra #,, and therefore Ejé_i = G = E;_i i lns=oo E;_i (g

Hys), and 3) the P} -distribution and the P?_; -distribution of 1,;—g" co-
o5 '\T

incide. Inequality (40) follows from the definitions of O'(;_i and a(;g. Inequality
(41) follows from the fact that for sufficiently small 6 > 0, for every strategy
o and stopping time T, EZ1p o0 (2741) < EZlpooov'(27) + €/6. Inequality
(42) follows from Lemma 4, which asserts that for every stopping time T,
EZ 1pcoov'(2r) < EZ 170 §' + /3. Inequality (43) follows from inequality
(32) which asserts that E? g' < u'(z) +¢/6.

By (32), EZ g' > u'(z) — €, which together with the equality v'(z, 05) =
E? g" implies that 7*(z, 05) > u’(2) —e. We conclude that (u, 05) is a limiting-
average e-equilibrium payoff and strategy, and therefore v is an asymptotic
limiting-average equilibrium payoff. O

Theorem 12 An ezact family (I's)s=o has an asymptotic uniform equilib-
rium payoff.
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Proof. First, recall that an exact family has an asymptotic uniform minmax.
The uniform e-equilibrium strategy os follows the pure strategy profile 75
(defined in the proof of the previous theorem), and reverts to punishing a
deviating player (in the uniform game). O

Theorem 13 An ezxact family (I's)sso has an asymptotic W -robust equilib-
rium payoff whenever W = (w')ien is a vector of nonstationary discounting
measures on [0, 00].

Proof. For 8 = (")ien € RY we denote by 3 W the vector (Bw");en. Note
that if 3° > 0 for every i € N, then the family (I's)s>o has an asymptotic
W-robust equilibrium payoff if and only if it has an asymptotic [ * W-robust
equilibrium payoff. Therefore we may assume that w?(oo) = 1.

Fix € > 0 and an asymptotic 1,.-robust equilibrium payoff v € RV*S of
the exact family (I's)s=o. Let 0 < ¢ < oo be such that w([t,00)) < &/||¢]|
for every i € N, and let ms = [t/d] and vs = v. Then, (ms,vs) converges
to (t,v). Let v € RY*S be an asymptotic (ﬁt,t, v) equilibrium payoff of
the family (I's)s>0, where W, is the restriction of W to the interval [0,t). If

s converges (as 0 goes to zero) to W, then ﬁt,é — the restriction of W;s to
{0,1,2,...,ms} — converges to W,

If o5 is the strategy profile that follows up to stage ms an e-equilibrium

meg,V

strategy profile in Iy % with a payoff within ¢ of v, and thereafter a 1..-

robust e-equilibrium with a payoff within € of v, then for every player ¢ and
all strategies 7 (6 > 0) of player i in Ts,

6c + liminf E? g&(w}) > v'(z) > —6¢ + limsup B _,gs(w}).
0—0+ g 5—0+ 95,75

Therefore, the exact family (I's)s~0 has an asymptotic W-robust equilibrium
payoft. O
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