
 
VALUES OF EXACT MARKET GAMES 

 
By 

 
 

OMER EDHAN 
 

Discussion Paper # 627        Sep 2012 
 

 

 האוניברסיטה העברית בירושלים
THE HEBREW UNIVERSITY OF JERUSALEM 

 
 

 
 
 
 

  
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 

 

 מרכז לחקר הרציונליות  
 

CENTER FOR THE STUDY 
OF RATIONALITY 

 
 
 
 
 
 
 
 

 
 

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel 
PHONE:  [972]-2-6584135      FAX:  [972]-2-6513681 

E-MAIL:              ratio@math.huji.ac.il 
     URL:    http://www.ratio.huji.ac.il/ 



Payoffs in Exact TU Economies

Omer Edhan∗

September 9, 2012

Abstract

We prove that a single-valued solution of perfectly competitive TU economies underling nonatomic

exact market games is uniquely determined as the Mertens value by four plausible value-related axioms.

Since the Mertens value is always a core element, this result provides an axiomatization of the Mertens

value as a core-selection. Previous works in this direction assumed the economies to be either differen-

tiable (e.g., Dubey and Neyman [9]) or of uniform finite-type (e.g., Haimanko [14]). Our work does not

assume that, thus it contributes to the axiomatic study of payoffs in perfectly competitive economies (or

values of their derived market games) in general. In fact, this is the first contribution in this direction.

1 Introduction

The equivalence of the core and the set of competitive (Walras) payoffs in “perfectly competitive” economies

is one of the most striking results in economics. It was already conjectured by Edgeworth1 [11], and has been

shown to hold in limit economies (e.g., [6, 17, 23]), nonstandard economies (e.g., [4]) and in nonatomic

economies (e.g., [2]). It was later on observed by Aumann ([3]) that, in nonatomic economies with a

smoothness assumption on the preferences, the set of “value allocations”2 also coincides with the above

two. This equivalence is known in the literature as the equivalence phenomena (see [9]).

The equivalence phenomena is even more astounding in economies with smooth, transferable utilities

(TU): these have a single-valued core whose unique element, a competitive payoff, is the Aumann-Shapley

[1] value. The coincidence and uniqueness3 of these sets demanded an explanation. This was supplied by

Dubey and Neyman [9] in the form of a “meta-equivalence” theorem for perfectly competitive (nonatomic)

TU economies with smooth preferences. Namely, they characterized the equivalence phenomena axiomat-

ically, by a list of four simple and plausible axioms.

Dubey and Neyman meta-equivalence result holds, nonetheless, only (see [9, p. 1146]) under the smooth-

ness assumption, namely - when the sets are singletons. In general, however, the core of a perfectly

∗School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Email addresses: edhan@post.tau.ac.il, omer.edhan@gmail.com

1In his terminology the core was dubbed the contract curve.
2Allocations whose definition is based on the Shapley [22, 1] value.
3Namely, that each set consists of one element.
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competitive (nonatomic) economy is usually not single-valued. If, for example, we adopt the production

interpretation for economies (as we usually shall), then in most applications the agents’ production func-

tions will usually have “kinks” that will prevent the core from being single-valued. If the core is not

single-valued, it is still equivalent to the set of competitive payoffs, but the Aumann-Shapley value may,

however, not exist. Thus, the task of extending Dubey and Neyman [9] “meta-equivalence” theorem in its

original form to the more general setting may seem to be impossible.

Nevertheless, a small divergence might help; we may wish to select an element of the core in a consistent

and economically meaningful way, that extends the Aumann-Shapley value whenever it exists. Such a

selection exists, and was first constructed by Mertens [18, 19], thus it is known as the Mertens value.

This selection avoids discontinuities, discrimination between agents, and inconsistencies in the selection of

payoffs. It also coincides with the asymptotic Shapley value of economies, whenever the later exists, and

thus it is natural to replace, in the more general setting, the Aumann-Shapley value with the Mertens value,

and to try to extend Dubey and Neyman [9] result into a “meta-selection” theorem for general economies.

The first breakthrough on this matter is due to Haimanko [14]. He proved that four plausible axioms,

closely related to those set in [9], determine a unique core selection on the domain of perfectly competitive

TU economies of uniform finite-type4, and that this core selection is indeed the Mertens [19] value. However,

Haimanko’s work did not settle the matter on the entire domain of perfectly competitive TU economies,

and not even on its subdomain consisting of finite-type economies5. Haimanko’s methods relied heavily on

the uniform finite-type assumption, with no apparent way to apply them in more general settings.

To be more specific, if an economy is of uniform finite-type, then its derived market game6 is a function

of finitely many, mutually singular, nonatomic probability measures. Haimanko [14] observed that the value

axioms imply, in this case, that the a payoff obeying his axioms can be written as a linear combination of

the derived market game’s measures, whose coefficients depend solely on the agents’ production functions

marginals. Haimanko then used the value axioms to prove that this observation gives rise to a simple

representation formula of the payoff as a barycenter of the economy’s core. His axiomatization also yielded,

in this case, a line of properties, geometric in nature, of the barycenter representation that lead in turn to

the characterization of the payoff as the Mertens [19] value, which is known7 to be a member of the core.

In general, a nonatomic market game derived from a perfectly competitive TU economy may not be

a vector measure game. In fact, even if we restrict our attention to economies whose derived market

games are vector measure games8, it is unknown if a payoff satisfying Haimanko’s axioms is indeed a

linear combination of the derived game’s measures. In fact, there are some examples, constructed on

other domains, to contradict that (e.g., Hart and Neyman [15]). This fact limits any straightforward

attempt to represent the payoff as a barycenter of the core and study the relationship between the different

4Namely, economies with finitely many types of production functions and endowments.
5Namely, those with finitely many type of production functions and general endowments.
6A game in characteristic function form that assigns to every coalition of agents the maximum production output that it

could achieve by reallocating its resources among its members.
7In the special case of perfectly competitive TU economies, the Mertens value is given by an explicit formula as a barycenter

of the core. See Mertens [19].
8E.g., in the case of finite-type economies, i.e., an economy with finitely many types of production functions and a general

endowments.
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representations, as it was done by Haimanko [14]. Thus, renouncing the uniform finite-type assumption

makes the problem by far more immune to analysis.

To make the problem a bit more tractable to analysis, we might wish to consider a subdomain of

“simple” perfectly competitive TU economies. We obviously do not wish to consider any subdomain, but

one with a clear importance in economic applications and one that will advance our understanding of the

problem. The payoffs studied in both Dubey and Neyman [9] and Haimanko [14] are assumed to follow

some9 continuity axiom. It is well known (e.g., Dubey and Neyman [9, Lemma 5.5], and recently also our

[12] more general result) that continuous payoffs in a perfectly competitive TU economy are completely

determined by the behavior of the derived market game in a small neighborhood of its diagonal. It may

thus be appropriate to consider only economies whose derived market games are completely determined by

their behavior in an “infinitesimal” neighborhood of the diagonal. In fact, we shall restrict our attention

to the domain generated by exact economies, namely, perfectly competitive TU economies whose derived

market games are exact. This domain contains many economies of interest, especially when we adopt the

production interpretation for the economies. Furthermore, these economies have another helpful advantage;

it is well known that perfectly competitive TU economies have finite dimensional cores (e.g., Hart [16]),

and therefore exact market games have a simple representation as vector measure games.

In this work we prove a “meta-selection” theorem for exact economies in general. Namely, we prove that

a single-valued solution of exact perfectly competitive TU economies is uniquely determined as the Mertens

value by the axioms of “efficiency”, “anonymity”, “separability”, and “positivity”. Out axiomatization is

akin to that of [14]. Table 1 may be found helpful in placing our work in the context of the main results

on the value equivalence phenomenon.

Value Equivalence Aumann and Shapley [1]

Value “Meta-Equivalence” Dubey and Neyman [9]

Value Selection Mertens [19]

Value “Meta-Selection”
uniform finite-type economies

Haimanko [14]

Value “Meta-Selection”
general exact economies

Edhan (this work)

Table 1: Summary of results
for perfectly competitive (nonatomic) TU economies

The axioms will be spelled out precisely in Section 2, but let us present them at an intuitive level now.

For the time being we shall spare the reader with most of the technical details. Denote the set of agents

by T . An economy E is essentially set by the agents’ endowments a and production functions u, so (ut, at)

are the production function and endowment of agent t ∈ T . Recall that the derived market game vE of E,

is the game in characteristic function form that assigns to every coalition of agents the maximum output

that it could produce by reallocating its resources among its members. Payoffs of the economy E may

9To be specific, it is assumed that the variation of the difference between the payoffs in two economies is sufficiently small
whenever the variation of the difference of the market games derived from these economies is sufficiently small.
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be identified with members of the set FA+ of positive finitely additive and bounded measures. Thus, a

payoff selection on the domain of exact economies (economies with an exact derived market game) Eex is

a mapping

ψ : Eex → FA+.

We will impose four axioms on ψ: “efficiency,” “anonymity,” “separability,” and “positivity.” Our main

result is that these axioms uniquely determine ψ as the Mertens value.

The efficiency axiom says that ψ is Pareto optimal. The anonymity axiom asserts that the labels of the

agents do not matter; their relabeling will only result in relabeling their payoffs, accordingly. These axioms

hold for many solutions, not only on Eex but also for more general domains and also for finite economies.

The separability axiom considers an economy made up of two separate, noninteracting parts; suppose

that, given economies E′, E′′, producing the same kind of output, we construct an economy in which

each agent has and can access its endowments and production abilities in E′ and E′′, but cannot use his

endowment in E′ to produce output in E′′ and vice versa. In this case, the output of every coalition

of agents in the economy E is just the sum of their outputs in E′ and E′′. So, essentially, production

in E is equivalent to production in E′ and in E′′ independently of each other. Thus, the payoff in E

should be at least as high as the separately obtained payoff of E′ and E′′, namely for every coalition S

ψ(E)(S) ≥ ψ(E′)(S) + ψ(E′′)(S). This axiom is related to the additivity axiom for the value.

The positivity axioms asserts that if the economy E has higher marginals than the economy E′ then

ψ(E)− ψ(E′) ∈ FA+. This is a weaker form of the positivity axiom for the value (see [1]).

The unique payoff selection satisfying these axioms turns out to be the Mertens [19] value10. It should be

noted that, with the exception of the axiom of efficiency, the axioms do not involve any assumption on the

range of the payoff selection. In particular, inclusion in the core is not implied by any of them individually.

It is thus surprising that a core selection is determined by these axioms. Even more astounding is the fact

that the payoff of an economy is completely determined by its core; indeed, economies sharing the same

core also have the same Mertens value.

Due to their proximity, it is worth comparing our axiomatization with the one offered in [14]. The

two axiomatizations differ in one axiom. We have replaced the contraction axiom, Haimanko’s version of

continuity, by our positivity axiom. The two axioms are in fact related, as the contraction and efficiency

axioms implies the positivity of the payoff selection (Proposition 4.6 of Aumann and Shapley [1]). The

continuity of the payoff selection is obtained, in this case, as an outcome of our axiomatization. It seems

that the continuity is needed as a separate axiom only if more general production functions are to be

considered.

Finally, let us mention that in the smooth utilities case axioms of a similar nature can characterize the

competitive payoff correspondence for perfectly competitive economies with nontransferable utilities (see

[10]). We hope that our approach can be translated into the setting of NTU economies as well.

10The Mertens value is constructed for economies in [19]. We briefly describe its formula in appendix B.
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2 Definitions, Axioms, and The Main Result

Let (T, C) be a standard measurable space. T is the set of agents, and C is the σ-algebra of coalitions. The

set of all bounded and finitely additive measures on (T, C) is denoted by FA, its cone of bounded, finitely

additive, and nonnegative measures on (T, C) is denoted by FA+, and the set of all bounded nonatomic

measures on (T, C) is denoted by NA. The set of nonatomic probability measures on (T, C) is denoted

by NA1. An economy E is a triple (u, a, ν), where u : T × Rk+ → R and a : T → Rk+ for some k, and

ν ∈ NA1. For each t ∈ T , at = a(t) is agent t initial endowment of commodities 1, ..., k, ut(·) = u(t, ·) is

its utility function on the space of commodity bundles Rk+, and ν is a population measure s.t. the following

conditions hold:

1. a is measurable;

2. u is C × Bk measurable, where Bk denotes the Borel σ-algebra on Rk+; and,

3.
∫
T atdν(t) ∈ (0,∞)k.

We further assume that for every t ∈ T :

4. ut is monotonically nondecreasing and continuous;

5. ut(x) = o(‖x‖) as ‖x‖ → ∞; and

6. ut(0k) = 0.

Given ν ∈ NA1 we denote by E(ν) the set of all economies E = (u, a, ν), and further denote E =
⋃

ν∈NA1

E(ν).

A game is a function v : C → R with v(∅) = 0. Given E = (u, a, ν) ∈ E(ν), the derived market game vE

corresponding to E is given for every S ∈ C by

vE(S) = max

{∫
T
ut(xt)dν(t)

∣∣∣x : T → Rk+, xν(S) = aν(S)

}
,

where yν(S) abbreviates
∫
S ytdν(t). The maximum is attained by [1, Proposition 36.1].

The core of an economy E is the set

Core(E) = {ν ∈ NA : ∀S ∈ C ν(S) ≥ vE(S), ν(T ) = vE(T )} ,

and this is a finite-dimensional set by [16, Eqaution (2.15), Corollary (2.16)]. An economy E = (u, a, ν) ∈
E(ν) is exact if11 vE(S) = min

µ∈Core(E)
µ(S). Let Eex(ν) be the subset of E(ν) consisting of exact economies,

and let Eex =
⋃

ν∈NA1

Eex(ν). By abuse of terminology we shall refer to a game v as an exact market game

iff there is some E ∈ Eex with v = vE . Denote by EM+ the set of exact market games.

A payoff selection on Eex is a mapping Ψ : Eex → FA+, that satisfies axioms (1)-(4) stated below.

11The minimum exists as Core(E) is compact.
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Axiom 1 (Efficiency). For every E ∈ Eex

Ψ(E)(T ) = vE(T ).

Denote by Θ the set of all measurable automorphisms of (T, C), namely, the set of bi-measurable

bijections θ : T → T . For every economy (u, a, ν) ∈ Eex and every θ ∈ Θ define the economy θE =

(θu, θa, θν) where (θu)t = uθ(t) and (θa)t = aθ(t) for each t ∈ T . Notice that for every S ∈ C vθE(S) =

vE(θS)
.
= (θvE)(S).

Axiom 2 (Anonimity). For every v ∈ Eex and every θ ∈ Θ

Ψ(θE) = θΨ(E).

If E = (u, a, ν), E′ = (u′, a′, ν) ∈ Eex(ν), where a : T → Rk+, a′ : T → Rk
′

+ , and ν ∈ NA1 define an

economy E ⊕ E′ ∈ E by (u ⊕ u′, a ⊕ a′, ν), where u ⊕ u′ : T × Rk+k′
+ → R and a ⊕ a′ : T → Rk+k′

+ are

given by (a⊕ a′)t = (at, a
′
t) and (u⊕ u′)t(x, y) = ut(x) + u′t(y). Observe that vE⊕E′ = vE + vE′ and hence

also that vE⊕E′ = min
µ∈Core(vE⊕E′ )

µ. Hence E ⊕ E′ ∈ Eex and EM+ is a positive cone. The following axiom

connects the payoff of the economies E ⊕ E′ with that of the payoffs of E,E′ ∈ Eex(ν):

Axiom 3 (Separability). For every ν ∈ NA1, E,E′ ∈ Eex(ν), and S ∈ C

Ψ(E ⊕ E′)(S) ≥ Ψ(E)(S) + Ψ(E′)(S).

Remark 2.1. Notice that by combining the efficiency and the separability axioms we obtain that for every

ν ∈ NA1, E,E′ ∈ Eex(ν), and S ∈ C

Ψ(E ⊕ E′)(S) = Ψ(E)(S) + Ψ(E′)(S)

A game v is monotonic if for every S ⊆ S′ ∈ C, v(S) ≤ v(S′).

Axiom 4 (Positivity). If E,E′ ∈ Eex and vE − vE′ is monotonic then

Ψ(E)−Ψ(E′) ∈ FA+.

The set of all payoff selections on Eex is denoted by PS(Eex). The existence of a payoff selection on

Eex that satisfies axioms (1)-(4) is a direct corollary of Mertens [19] (see also Appendix B). The payoff

selection constructed by Mertens [19] will be denoted by ΨM . Our main result is:

Theorem 2.2. PS(Eex) = {ΨM}.

Remark 2.3. It is important to note that a payoff selection that satisfies axioms (1)-(4) may be viewed as

a mapping on the space of exact market games, and that axioms (1)-(4) can be restated in the new setting

in a straightforward way. Such a mapping is usually referred to as a value in the relevant literature (e.g.,

see [14]), and is closely related to the theory of values of nonatomic games (see [1]).
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3 Preparations

3.1 Vector measure representation of games in EM+

For k ≥ 2 denote by ∆k the k−1 dimensional simplex in Rk+. Denote by EMk
+ the positive cone generated

by the functions fC : Rk+ → R given by fC(x) = min
c∈C

c · x where C ⊆ ∆k is compact and convex. Denote

by HMk
+ the positive cone generated by the functions fC : Rk+ → R where C ⊆ ∆k is compact and strictly

convex. Denote by EMk and HMk the linear spaces spanned by EMk
+ and HMk

+ respectively.

Lemma 3.1. If v ∈ EM+ then v = f ◦ µ with f ∈ EMk
+ and µ ∈

(
NA1

)k
for some k ≥ 2.

Proof. Suppose v ∈ EM+ and v 6= 0. As Core(v) is finite-dimensional then Core(v) = C · µ for some

µ ∈
(
NA1

)k
, C ⊂ Rk+ is compact and convex, and k ≥ 2. Notice that if c ∈ C then

k∑
i=1

ci = v(I), hence

v(S) = min
ν∈Core(v)

ν(S) = v(I) min
c∈ C

v(I)

c · µ ∈ EM+.

Denote by HM+ the positive cone generated by games of the form f ◦µ with f ∈ HMk
+ and µ ∈

(
NA1

)k
for some k ≥ 2. Denote by EM and HM the linear space spanned by EM+ and HM+ respectively.

3.2 Directional derivatives of EMk functions.

Given f ∈ EMk
+, x ∈ Rk++, and y ∈ Rk, the directional derivative df(x, y) of f at x in the direction y is

given by

df(x, y) = lim
ε↘0

f(x+ εy)− f(x)

ε
. (3.1)

The limit exists for every f ∈ EMk
+ by concavity. By linearity the definition may be extended to functions

f ∈ EMk.

If f ∈ EMk
+ then for every x ∈ Rk++ the function df(x, ·) : Rk → R is concave. Thus the directional

derivative of df(x, ·) at y ∈ Rk in the direction z ∈ Rk that is given by

df(x, y, z) = lim
ε↘0

df(x, y + εz)− df(x, y)

ε
, (3.2)

exists, and by linearity the definition may be extended to functions f ∈ EMk.

Denote by 1k ∈ Rk the vector with coordinates (1k)i = 1 for every 1 ≤ i ≤ k, and let Dk =

{t1k : t ∈ R+}. Notice that if f ∈ EMk then for every x ∈ Dk \ {0k}, every y, z ∈ Rk, every a ∈ R,
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and every b > 0,

df(x, a1k + by, z) = df(1k, y, z). (3.3)

Let χ : T → Rk. For every f ∈ EMk, x ∈ Rk++, and y ∈ Rk define df(x, y, χ) : T → R by

∀s ∈ T, df(x, y, χ)(s) = df(x, y, χ(s)). (3.4)

3.3 The direction space Ωλ.

For every µ ∈
(
NA1

)k
denote µ = 1

k

k∑
i=1

µi. For any λ ∈ NA1 and k ≥ 1 denote

Zkλ =

{
µ ∈

(
NA1

)k
: µ� λ,

dµ

dλ
∈ L∞(λ)

}
.

Denote NA∗ =
∞⋃
k=1

(
NA1

)k
, and Zkλ =

∞⋃
k=1

Zkλ . For µ ∈ NA∗ with µ = (µ1, ..., µm) denote k(µ) = m. For

any k ≥ 1 and x ∈ Rk denote x = 1
k

n∑
i=1

xi and12 Υk(x) = x−x1k
‖x−x1k‖2

. Also denote Sk⊥ =
{

Υk(x) : x ∈ Rk
}

.

Let B1
+(T, C) be the set of bounded measurable functions χ : T → R with 0 ≤ χ ≤ 1. For any y ∈ B1

+(T, C)
and µ ∈ NA∗ denote y(µ) = Υk(µ)(µ(y)).

The mapping y 7→ (y(µ))µ∈Z∗λ
maps B1

+(T, C) onto Yλ ⊆
∏

µ∈Z∗λ
Sk(µ)
⊥ . Denote the closure of Yλ in∏

µ∈Z∗λ
Sk(µ)
⊥ (w.r.t. the product topology) by Ωλ. We refer to Ωλ as the direction space with perspective λ.

The following Lemmata are proved in Appendix A:

Lemma 3.2. Let µ ∈ Zkλ and U : Rk → Rm be a linear map with U ◦ µ ∈ Zmλ . If x ∈ Ωλ satisfies

U(x(µ)) 6∈ Dm then

x(U ◦ µ) = (Υm ◦ U) (x(µ)). (3.5)

Lemma 3.3. Let µ ∈ Zk+1
λ . For every α ∈ [0, 1] and 1 ≤ j ≤ k denote µαj = (1 − α)

k∑
i=1

µiei + α(µk+1 −

µj)ej ∈ Zkλ . If x ∈ Ωλ satisfies (x(µ)1, ..., x(µ)k) 6∈ Dk, then

x(µαj ) −→
α→0+

x(µ0
j ). (3.6)

3.4 The derived value on EM

Lemma 3.4. Every Ψ ∈ PS(Eex) determines a value (see [1]) Φ : EM→ FA.

12The convention 0k
0

= 0k is used.
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Proof. For v ∈ EM with v = vE − vE′ for some E,E′ ∈ Eex, let

Φ(v) = Ψ(E)−Ψ(E′).

Notice that for a choice of E0, E
′
0, E1, E

′
1 ∈ Eex with v = vE0 − vE′0 = vE1 − vE′1 there is some ν ∈ NA1

with E0, E
′
0, E1, E

′
1 ∈ Eex(ν). Therefore the mapping Φ is well defined by Remark 2.1. Linearity of Φ also

follows from Remark 2.1, and efficiency and anonymity of Φ follow easily from the efficiency and anonymity

axioms for Ψ, respectively. If v ∈ EM is monotonic and v = vE − vE′ for some E,E′ ∈ Eex, then by the

positivity axiom for Ψ we obtain Φ(v) = Ψ(E)−Ψ(E′) ∈ FA+, hence Φ is also positive, and therefore it

is a value on EM.

We refer to Φ as the derived value of Ψ. We shall also consider, from now on, values on EM. As we

shall always mention the domain, and use suitable notation, no confusion should result.

3.5 Representations of values on EM

Here we summarize some of the results in Edhan [13] that are needed for the proof of Theorem 2.2. The

statement of these results require a somewhat deeper knowledge in functional analysis. The reader may

refer to the functional analysis background appendix (Appendix D).

The following Theorem is a consequence of [13, Theorem 2.6]. It is proved in Appendix A:

Theorem 3.5. Let Φ be a value on EM. For every λ ∈ NA1 there is a finitely additive and positive vector

measure Pλ of bounded semi-variation (i.e., |Pλ|(Ωλ) <∞. See Appendix D for details.) on the Borel sets

of Ωλ with values in L
(
L∞(λ), L2(λ)

)
s.t. for every coalition S ∈ C the vector measure PSλ = 〈Pλ, χS〉 is

positive, regular, and countably additive of bounded variation, and for every f ∈ EMk and µ ∈ Zkλ we have

for every S ∈ C

Φ(f ◦ µ)(S) =

∫
Ωλ

df

(
1k, x(µ),

dµ

dλ

)
dPSλ (x). (3.7)

Furthermore, if f ∈ HMk then

Φ(f ◦ µ)(S) =

∫
S

(∫
Ωλ

df

(
1k, x(µ),

dµ

dλ

)
dPλ(x)

)
(s)dλ(s). (3.8)

For every k ≥ 1, every nonempty J ⊆ {1, ..., k}, and every x ∈ Rk, denote by πkJ(x) ∈ R|J | the projection

of x onto the set of indices J . The following proposition summarizes some of the results of [13]:

Proposition 3.6. If Φ is a value on EM, then for every λ ∈ NA1 the vector measure Pλ in Theorem 3.5

can be chosen s.t. the following properties hold:

1. If µ ∈ Zkλ satisfies dµ
dλ (s) 6∈ Dk for λ-a.e. s ∈ T then for every Borel set E ⊆ Sk⊥ we have (in the
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vector lattice L2(λ))

〈1, Pλ〉 ({x ∈ Ωλ : x(µ) ∈ E}) = 〈1, Pλ〉 ({x ∈ Ωλ : x(µ) ∈ −E}) ; (3.9)

2. If J ⊆ {1, ..., k} is nonempty, and µ ∈ Zkλ satisfies
d(πkJ◦µ)
dλ (s) 6∈ D|J | for λ-a.e. s ∈ T then (in the

vector lattice L2(λ))

〈1, Pλ〉
({
x ∈ Ωλ : πkJ (x(µ)) ∈ D|J |

})
= 0; (3.10)

3. If µ ∈ Zkλ satisfies dim(AF (µ)) ≥ 2 then (in the vector lattice L2(λ))

〈1, Pλ〉 ({x ∈ Ωλ : x(µ) = 0k}) = 0; (3.11)

4. If χ ∈ L∞(λ) then for every Borel set E ⊆ Ωλ we have (in the vector lattice L2(λ))

〈χ, Pλ〉 (E) = χ〈1, Pλ〉 (E) . (3.12)

Proof. Given the choice of Pλ, property (1) is a consequence of [13, Lemma 5.5], property (2) is a con-

sequence of [13, Corollary 5.6], property (3) is a consequence of [13, Remark 5.1], and property (4) is a

consequence of [13, Remark 5.3].

4 The Proof of Theorem 2.2

This section is dedicated to the proof of Theorem 2.2. Before we begin, let us briefly describe the structure

of the proof. For every payoff selection Ψ ∈ PS(Eex) we consider its derived value Φ, which is a value on

EM given by Lemma 3.4. We apply Theorem 3.5 and Proposition 3.6 to Φ and consider for every λ ∈ NA1

the vector measure Pλ. We then study the Borel measures ηSλ,µ on Sk⊥ given by

ηSλ,µ(E) = 〈1, PSλ 〉 ({x ∈ Ωλ : x(µ) ∈ E}) (4.1)

for every λ ∈ NA1, every µ ∈ Zkλ , every S ∈ C, and every Borel set E ⊆ Sk⊥. We show that if λ(S) > 0 then

the family MS
λ =

{
ηSλ,µ : µ ∈ Z∗λ

}
induces an auxiliary family QSλ =

{
κSλ,µ : µ ∈ Z∗λ

}
of Borel probability

measures on Euclidian spaces that in turn induces a conical set measure (see Appendix C for details)

on L1(λ) with a certain invariance property w.r.t. members of the group Θ(λ), the subgroup of Θ of λ-

preserving automorphisms. Theorem 2.2 is then deduced by the aid of Proposition C.2 (in the Appendix)

and some of the properties described in Proposition 3.6.
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4.1 The Measures κSλ,µ and their properties.

From now on fix some λ ∈ NA1 and S ∈ C with λ(S) > 0. For every µ ∈ Zkλ the measure ηSλ,µ given by

Equation (4.1) may be considered as a Borel measure on Rk with total mass λ(S) which is supported on

Sk⊥. We shall, from now on, treat these measures as such and no confusion should thus result.

Denote13 NAλ0 =
{
µ ∈ NA : |µ| � λ, d|µ|

dλ ∈ L
∞(λ), µ(T ) = 0

}
and let µ ∈

(
NAλ0

)k
. For each 1 ≤

i ≤ k with µi 6= 0 let µi = µ+
i − µ

−
i be the Jordan decomposition of µi. This decomposition is uniquely

determined. If µi = 0 we arbitrarily define µ+
i = µ−i = λ. Let

µ∗ =

(
µ+

1

µ+
1 (T )

, ...,
µ+
k

µ+
k (T )

,
µ−1

µ+
1 (T )

, ...,
µ−k

µ+
k (T )

, λ

)
∈ Z2k+1

λ ,

and define a linear mapping Tµ : R2k+1 → Rk by Tµ(x) =
(
µ+
i (T )(xi − xk+i)

)k
i=1

. Define a Borel probability

measure κSλ,µ on Rk by14 κSλ,µ = 1
λ(S)Tµ◦η

S
λ,µ∗ . For any measure P on Rk denote by φP its Fourier transform.

Denote15 by Bcon(Rk) the σ-algebra generated by open cones C ⊆ Rk based at 0k. Denote by κSλ,µ the

restriction of κSλ,µ to Bcon(Rk).

Lemma 4.1. The measure κSλ,µ is invariant under reflections, i.e., κSλ,µ(E) = κSλ,µ(−E) for every E ∈
Bcon(Rk).

Proof. If dim(AF (µ∗)) = 1 then ηSλ,µ∗ = λ(S)δ02k+1
and hence κSλ,µ = δ0k which is invariant under reflec-

tions.

Suppose dim(AF (µ∗)) ≥ 2. Then by property (1) in Proposition 3.6 the measure ηSλ,µ∗ is invariant

under reflections as for λ-a.e. s ∈ T we have dµ∗

dλ (s) 6∈ D2k+1, and the Lemma follows by the definition of

κSλ,µ.

Recall that for every k ≥ 1, every nonempty J ⊆ {1, ..., k}, and every x ∈ Rk we denoted by πkJ(x) the

projection of x onto the set of indices J , and let Υk
J(x) = Υ|J | ◦ πkJ(x).

Lemma 4.2. For every k ≥ 1, µ ∈
(
NAλ0

)k
, and nonempty J ⊆ {1, ..., k}

κS
λ,πkJ◦µ

= πkJ ◦ κSλ,µ.

Proof. First notice that πkJ ◦ µ ∈
(
NAλ0

)|J |
, so κS

λ,πkJ◦µ
is well defined.

If πkJ ◦ µ = 0|J | the Lemma is straightforward. Suppose otherwise. We claim that the Lemma follows if

for every m ≥ 2, J ′ ⊆ {1, ...,m} with |J ′| ≥ 2, and ν ∈ Zmλ satisfying
d(πm

J′◦ν)

dλ (s) 6∈ D|J ′| for λ-a.e. s ∈ T ,

we have

ηSλ,πm
J′◦ν

= Υm
J ′ ◦ ηSλ,ν . (4.2)

13See appendix C for more details.
14Recall that by assumption λ(S) > 0.
15See appendix C for more details.
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Indeed, in this case take J ′ = {1 ≤ j ≤ 2k : j mod k ∈ J} ∪ {2k + 1}. Then 2k + 1 ≥ 2, |J ′| ≥ 2, and
d(π2k+1

J′ ◦µ∗)
dλ (s) 6∈ D|J ′| for λ-a.e. s ∈ T . Hence for every E ∈ Bcon(R|J |)

λ(S)κS
λ,πkJ◦µ

(E) =
(
TπkJ◦µ

◦ ηS
λ,(πkJ◦µ)∗

)
(E) =

(
TπkJ◦µ

◦ ηS
λ,π2k+1

J′ ◦µ∗

)
(E) = (4.3)(

TπkJ◦µ
◦Υ2k+1

J ′ ◦ ηSλ,µ∗
)

(E) = ηSλ,µ∗
(

(TπkJ◦µ
◦Υ2k+1

J ′ )−1(E)
)

= (4.4)

ηSλ,µ∗
(

(πkJ ◦ Tµ)−1(E)
)

=
(
πkJ ◦ Tµ ◦ ηSλ,µ∗

)
(E) = λ(S)

(
πkJ ◦ κSλ,µ

)
(E), (4.5)

where the last equality in line (4.3) above follows from Equation (4.2), the last equality in line (4.4)

follows from the fact that16
(
TπkJ◦µ

◦Υ2k+1
J ′

)−1
(E) =

(
πkJ ◦ Tµ

)−1
(E) for every E ∈ Bcon(Rk), and the last

equality in line (4.5) follows by the definition of κSλ,µ, and the Lemma follows.

We thus turn to prove Equation (4.2). Let ν ∈ Zmλ , and suppose J ′ ⊆ {1, ...,m} satisfies |J ′| ≥ 2. If

dim(AF (πmJ ′ ◦ ν)) = 1 then for every x ∈ Ωλ we have x(πmJ ′ ◦ ν) = 0|J ′| and Υm
J ′(x(ν)) = 0|J ′|. Thus

ηSλ,πm
J′◦ν

(
{

0|J ′|
}

) = 〈1, PSλ 〉(
{
x ∈ Ωλ : x(πmJ ′ ◦ ν) = 0|J ′|

}
) = 〈1, PSλ 〉(Ωλ) =

〈1, PSλ 〉(
{
x ∈ Ωλ : Υm

J ′ (x(ν)) = 0|J ′|
}

) = Υm
J ′ ◦ ηSλ,ν(

{
0|J ′|

}
),

and therefore ηSλ,πm
J′◦ν

= Υm
J ′ ◦ ηSλ,ν = λ(S)δ0|J′| , and we are done.

Suppose dim(AF (πmJ ′ ◦ ν)) ≥ 2. By property (2) in Proposition 3.6 we have (as by our assumption
d(πm

J′◦ν)

dλ (s) 6∈ D|J ′| for λ-a.e. s ∈ T )

〈1, PSλ 〉(
{
x ∈ Ωλ : Υm

J ′(x(ν)) = 0|J ′|
}

) = 0. (4.6)

Thus for every Borel set E ⊆ S|J
′|
⊥

Υm
J ′ ◦ ηSλ,ν(E) = 〈1, PSλ 〉({x ∈ Ωλ : Υm

J ′(x(ν)) ∈ E}) = (4.7)

〈1, PSλ 〉(
{
x ∈ Ωλ : Υm

J ′(x(ν)) ∈ E \
{

0|J ′|
}}

) = (4.8)

〈1, PSλ 〉(
{
x ∈ Ωλ : x(πmJ ′ ◦ ν) ∈ E \

{
0|J ′|

}}
) = (4.9)

〈1, PSλ 〉({x ∈ Ωλ : x(πmJ ′ ◦ ν) ∈ E}) = ηSλ,πm
J′◦µ

,

where the last equality in line (4.7) follows from Equation (4.6), the equality in line (4.8) follows from

Lemma 3.2, and the equality in line (4.9) follows as17 〈1, PSλ 〉(
{
x ∈ Ωλ : x(πmJ ′ ◦ ν) = 0|J ′|

}
) = 0.

16Indeed if we order the elements of J as i1 < ... < i|J| then

Tπk
J
◦µ ◦Υ2k+1

J′ (x) =

(
µ+
im

(T )(xim − xim+k)
)|J|
m=1∥∥∥π2k+1

J′ (x)− π2k+1
J′ (x)1|J′|

∥∥∥
2

=
πkJ ◦ Tµ(x)∥∥∥π2k+1

J′ (x)− π2k+1
J′ (x)1|J′|

∥∥∥
2

,

hence for E ∈ Bcon(R|J|) we have Tπk
J
◦µ ◦Υ2k

J′ (x) ∈ E ⇐⇒ πkJ ◦ Tµ(x) ∈ E.
17since dim(AF (πmJ′ ◦ µ)) ≥ 2. See property (3) in Proposition 3.6.
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Lemma 4.3. Suppose µ ∈
(
NAλ0

)k
is a vector of mutually singular measures and θ ∈ Θ(λ). Then

κSλ,θ∗µ = κλ,µ.

Proof. It is sufficient to prove that if ν ∈ Zmλ is a vector of mutually singular measures for some m ≥ 2,

then for every θ ∈ Θ(λ)

ηSλ,θν = ηSλ,ν . (4.10)

Indeed, denote πk = π2k+1
{1,...,2k}, and given a vector of mutually singular measures µ ∈

(
NAλ0

)k
let Aµ :

R2k → Rk be given by Aµ(x) =
(
µ+
i (T )(xi − xi+k)

)k
i=1

. Then Tµ = Aµ ◦ πk and for every and every t ∈ Rk

λ(S)φκSλ,θµ
(t) = φηS

λ,θµ∗
(T ∗θµ(t)) = φηS

λ,θµ∗
(T ∗µ(t)) = (4.11)

φηS
λ,θ(πk◦µ∗)

(A∗µ(t)) = φηS
λ,πk◦µ∗

(A∗µ(t)) = φηS
λ,µ∗

(T ∗µ(t)) = λ(S)φκSλ,µ
(t), (4.12)

where the second equality in line (4.11) follows as T ∗θµ = T ∗µ , the last equality in line (4.11) and the second

equality in line (4.12) follow from Lemma 4.2, and the first equality in line (4.12) follows from Equation

(4.10).

We turn to prove Equation (4.10). Let m ≥ 2, let f ∈ HMm, and let ν ∈ Zmλ be a vector of

mutually singular measures. Choose a function g in the equivalence class of dν
dλ . Let Sm+1 = Sm+1(g) =

{s ∈ T : g(s) = 0m}, and let νm+1 ∈ NA be the measure whose Radon-Nykodim derivative w.r.t. λ is the

extended function
χSm+1

λ(Sm+1) . For α ∈ [0, 1] denote να = ν + α · sign(λ(Sm+1))(νm+1 − ν1)e1. By combining

Theorem B.1 (in the Appendix) with Theorem 3.5 we obtain for every R ∈ C and α ∈ (0, 1]∫
Sm⊥
df(1m, z, ν

α(R))dQm(x) =

∫
Ωλ

df

(
1m, x(να),

dνα

dλ

)
dPRλ (x), (4.13)

where Qm is the measure given by Equation (B.2). Choose a measurable partition S1, ..., Sm of T \ Sm+1

s.t. for every 1 ≤ i ≤ m dνi
dλ is supported on Si. For every 1 ≤ i ≤ m+ 1 and R ∈ C with R ⊆ Si we thus

obtain by combining Equation (4.13) with property (4) in Proposition 3.6∫
Sm⊥
df(1m, z, ei mod m)dQν(x)νi mod m(R) = (4.14)∫

Ωλ

df (1m, x(να), ei mod m) d〈dνi mod m

dλ
, PRλ 〉(x).
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Taking α→ 0+ in Equation (4.14) we obtain18 by the bounded convergence theorem D.2 (in the Appendix)∫
Sm⊥
df(1m, z, ei mod m)dQm(x)νi mod m(R) = (4.15)∫

{x:(x((ν,νm+1))1,...,x((ν,νm+1))m) 6∈Dm}
df (1m, x(ν), ei mod m) d〈dνi mod m

dλ
, PRλ 〉(x)

for every 1 ≤ i ≤ m+ 1 and every coalition R ⊆ Si.

By [14, Proposition 3.8], for every 1 ≤ j ≤ m the set of functions {df(1m, ·, ej) : f ∈ HMm} is dense in

C(Sm⊥ \ {0m}). Hence for every 1 ≤ i ≤ m+ 1 and every coalition R ⊆ Si we obtain from Equation (4.15)

〈dνi mod m

dλ
, PRλ 〉 = νi mod m(R)Qm. (4.16)

By passing to the Radon-Nykodim derivatives in Equation (4.16) and recalling the definition of the partition

S1, ..., Sm, Sm+1 of T we deduce that for every Borel set E ⊆ Sm⊥ we have for λ-a.e. s ∈ T

〈1, Pλ〉({x ∈ Ωλ : x(ν) ∈ E})(s) = Qm(E). (4.17)

Thus, integrating Equation (4.17) over S ∈ C yields

〈1, PSλ 〉({x ∈ Ωλ : x(ν) ∈ E}) = Qm(E)λ(S) (4.18)

for every Borel set E ⊆ Sm⊥ . Equation (4.10) now follows directly from the definition of the measure ηSλ,ν ,

and the Lemma follows.

Lemma 4.4. For every µ ∈ Zkλ with dim(AF (µ)) ≥ 2 and every E ∈ B(Sk⊥)

λ(S)Υk ◦ κSλ,µ−µ1k(E) = ηSλ,µ(E).

Proof. Denote ξ = µ− µ1k. For every Borel set E ⊆ Sk⊥

λ(S)Υk ◦ κSλ,ξ(E) = Υk ◦ Tξ ◦ ηλ,ξ∗(E) = (4.19)

〈1, PSλ 〉
({
x :∈ Ωλ : Υk ◦ Tξ(x(ξ∗)) ∈ E

})
= 〈1, PSλ 〉 ({x :∈ Ωλ : x(µ) ∈ E}) = ηSλ,µ(E), (4.20)

where the equalities in line (4.19) follow by the definitions of the measures κSλ,ξ and ηSλ,µ respectively, the

first equality in line (4.20) follows by combining the fact that for each x ∈ Ωλ with Tξ(x(ξ∗)) 6= 0k we have

Υk ◦ Tξ(x(ξ∗)) = x(µ) with the fact that19 〈1, PSλ 〉({x ∈ Ωλ : Tξ(x(ξ∗)) = 0k} = 0, and the last equality in

line (4.20) follows by the definition of the measure ηSλ,µ.

18Notice that as m ≥ 2 we have 〈1, PRλ 〉({x : (x(ν, νm+1)1, ..., x(ν, νm+1)m) ∈ Dm}) = 0 by property (2) in Proposition 3.6.
Also notice that by combining Lemma 3.3 with the continuity, for every 1 ≤ i ≤ m, of the function df(1m, ·, ei) on Sm⊥ , we
obtain df(1k, x(να), ei) −→

α→0+
df(1m, x(ν), ei) for every 1 ≤ i ≤ m and x ∈ Ωλ with (x(ν, νm+1)1, ..., x(ν, νm+1)m) ∈ Dm.

19As dim(AF (ξ∗)) ≥ 2 we have by Lemma 4.2 ηSλ,ξ∗
({
x ∈ R2k+1 : ∀1 ≤ i ≤ k, xi = xk+i

})
= 0 and

hence 〈1, PSλ 〉 ({x ∈ Ωλ : Tξ(x(ξ∗)) = 0}) = ηSλ,ξ∗
({
x ∈ R2k+1 : ∀1 ≤ i ≤ k, xi = xk+i

})
= 0.
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The following Proposition summarizes the results of this subsection:

Proposition 4.5. For every S ∈ C with λ(S) > 0 and µ ∈
(
NAλ0

)k
the probability measure κSλ,µ induced

by restricting the probability measure κSλ,µ to (Rk,Bcon(Rk)) satisfies the following conditions:

1. if µ 6= 0k then κSλ,µ({0k}) = 0 and if µ = 0k then κSλ,µ = δ0k ;

2. ∀E ∈ Bcon(Rk), κSλ,µ(E) = κSλ,µ(−E);

3. ∀J ⊆ {1, ..., k} with J 6= ∅, κS
λ,πkJ◦µ

= πkJ ◦ κSλ,µ;

4. if µ is a vector of mutually singular measures then for every θ ∈ Θ(λ), κSλ,θµ = κSλ,µ; and,

5. if µ ∈ Zkλ then for every E ∈ B(Sk⊥), λ(S)Υk ◦ κSλ,µ−µ1k(E) = ηSλ,µ(E).

4.2 The proof of Theorem 2.2

By combining properties (1)-(3) in Proposition 4.5 with Lemma C.1 (in the Appendix) we deduce that for

every S ∈ C with λ(S) > 0 the set QSλ =
{
κSλ,µ : ∃k ∈ N, µ ∈

(
NAλ0

)k}
induces a conical measure QSλ on

L1(λ), and for every µ ∈
(
NAλ0

)k
we have QSλ ◦ µ−1 = κSλ,µ on (Rk,Bcon(Rk)). By combining that with

property (4) in Proposition 4.5 and Proposition C.2 (in the Appendix), we deduce that the conical measure

QSλ is unique, and for every µ ∈
(
NAλ0

)k
we have QSλ ◦ µ−1 = Υk ◦Qµ where Qµ is the measure given by

Equation B.1. Therefore by property (5) in Proposition 4.5 we obtain for every S ∈ C with λ(S) > 0

ηSλ,µ = λ(S)Qµ.

Therefore for every Borel set E ⊆ Sk⊥ we have for λ-a.e. s ∈ T

〈1, Pλ〉({x ∈ Ωλ : x(µ) ∈ E})(s) = Qµ(E). (4.21)

To prove Theorem 2.2 it is now sufficient to verify that if Ψ ∈ PS(Eex) then for every k ≥ 2, every

compact and convex C ⊆ ∆k, every µ ∈
(
NA1

)k
with dim(AF (µ)) ≥ 2, every economy E ∈ Eex with

Core(E) = C · µ and every S ∈ C, Ψ(E)(S) = ΨM (E)(S). We first consider compact and strictly convex

C. In this case
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Ψ(E)(S) =

∫
Ωλ

dfC

(
1k, x(µ),

dµ

dλ

)
dPSλ (x) = (4.22)∫

S

(∫
Ωλ

dfC

(
1k, x(µ),

dµ

dλ

)
dPλ(x)

)
(s)dλ(s) = (4.23)

k∑
i=1

∫
S

(∫
Ωλ

dfC (1k, x(µ), ei)
dµi
dλ

(s)d〈1, Pλ〉(x)

)
(s)dλ(s) = (4.24)

k∑
i=1

∫
Sk⊥

(∫
S
dfC (1k, x, ei)

dµi
dλ

(s)dλ(s)

)
dQµ(x) =

∫
Sk⊥
dfC (1k, x, µ(S)) dQµ(x) = ΨM (E)(S),

where the first equality in line (4.22) follows from Theorem 3.5, the last equality in line (4.22) follows by

combining Equation (3.8) with property (4) in Proposition 3.6, the equality in line (4.23) follows as fC

is continuously differentiable on Rk+ \Dk and 〈1, Pλ〉({x : x(µ) = 0k}) = 0, and the equality in line (4.24)

follows from Fubini’s theorem. We thus also deduce that Ψ = ΨM on HM.

Let C ⊆ ∆k be compact and convex. Let ΦM the value derived from ΨM . For each n ≥ 1 choose a

compact and strictly convex Cn ⊆ ∆k s.t.20 fCn −→n→∞ f pointwise. Then for every S ∈ C

Ψ(E)(S) =

∫
Ωµ

dfC

(
1k, x(µ),

dµ

dµ

)
dPSµ (x) ≤ (4.25)∫

Ωµ

lim inf
n→∞

dfCn

(
1k, x(µ),

dµ

dµ

)
dPSµ (x) ≤ lim inf

n→∞

∫
Ωµ

dfCn

(
1k, x(µ),

dµ

dµ

)
dPSµ (x) = (4.26)

lim inf
n→∞

Φ(fCn ◦ µ)(S) = lim inf
n→∞

ΦM (fCn ◦ µ)(S) = ΦM (fC ◦ µ)(S) = ΨM (E)(S), (4.27)

where the first equality in line (4.25) follows by Theorem 3.5, the last inequality in line (4.25) follows from

[21, Theorem 24.5], the inequality in line (4.26) follows from Fatou’s lemma D.3 (in the Appendix), the first

equality in line (4.27) follows as Φ = ΦM on HM, and the last equality in line (4.27) follows by combining

formula (B.3) (in the Appendix) with the fact that the measure Qµ is absolutely continuous w.r.t. the Haar

measure on Sk⊥ and with the fact that by [21, Theorem 24.5] we have dfCn(1k, x, µ(S)) −→
n→∞

dfC(1k, x, µ(S))

at every differentiability point x ∈ Sk⊥, i.e., almost everywhere. By the efficiency axiom we thus obtain for

every S ∈ C

Ψ(E)(S) = ΨM (E)(S),

and we are done.

20E.g., we may choose the sequence (Cn)∞n=1 to converge to C in the Hausdorff metric.
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A Proofs

Proof of Lemma 3.1. For x ∈ Ωλ with U(x(µ)) 6∈ Dm, choose a net
(
yβ
)
β∈B ⊆ Yλ converging to x.

Notice that for any sufficiently large β ∈ B, U(µ(yβ)) 6∈ Dm. Thus

x(U ◦ µ) = lim
β∈B

Υm
(

(U ◦ µ)(yβ)
)

= lim
β∈B

Υm
(
U(µ(yβ))− U(µ(yβ)1k)

)
= (A.1)

lim
β∈B

Υm
(
U(µ(yβ)− µ(yβ)1k)

)
= lim

β∈B
Υm

(
U ◦Υk(µ(yβ))

)
= (A.2)

Υm

(
U

(
lim
β∈B

Υk(µ(yβ))

))
= (Υm ◦ U) (x(µ)),

where the second equality in line (A.1) follows from the fact that U(1k) = 1m and the last equality in line

(A.2) follows by combining the continuity of Υk on Sk⊥ \ {0k} with the assumption U(x(µ)) 6∈ Dm.

Proof of Lemma 3.2. Let Aαj , A : Rk+1 → Rk be given by Aαj (x) = (1− α)(x1, ..., xk) + α(xk+1 − xj)ej,
and A(x) = k

k+1(x1, ..., xk) + 1
k+1xk+11k. Let x ∈ Uη.
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If x ∈ Ωλ satisfies (x(µ))0
j 6∈ Dk then by Lemma 3.2 for every small enough α ∈ (0, 1) we have

x(µαj ) =
(

Υk ◦Aαj
)

(x(µ)) , (A.3)

and also (
Υk ◦A

)
(x(µ)) = x(A ◦ µ) (A.4)

Thus,

lim
α→0+

x(µαj )
1
= Υk

(
lim
α→0+

Aαj (x(µ))

)
= Υk

(
(x(µ))0

j

)
= (A.5)

Υk
(

(x(µ))0
j − (x(µ))0

j1k

)
= Υk

(
(x(µ))0

j +
1

k
x(µ)k+11k

)
2
= (A.6)

= x(A ◦ µ) = x(µ0
j ),

where the first equality in line (A.5) follows by combining Equation (A.3) with the continuity of Υk outside

of Dk, and the last equality in line (A.6) follows from Equation (A.4).

Proof of Lemma 3.4. Set Q = EM in [13, Theorem 2.6], and let ÊMλ be generated by pairs (f, µ)

with f ∈ EMk
+ and µ ∈ Zkλ for some k ≥ 2. Let

{
P̂λ

}
λ∈NA1

be the representing measures of Ψ w.r.t.

DÊM, whose existence is proved in [13, Theorem 2.6]. For x ∈
∏

µ∈Z∗λ
Rk(µ) define Υ(x) =

(
Υk(µ)(xµ)

)
µ∈Z∗λ

.

Choosing Pλ = Υ ◦ P̂λ for every λ ∈ NA1 and recalling Equation (3.3) proves Equation (3.7). Equation

(3.8) follows by combining [13, Theorem 2.1] with [13, Equation (2.2)].

B The Mertens Value on EM

The construction of the Mertens value ΨM for market games is carried out in details in [19]. Here we

briefly describe the form of the Mertens value on EM.

The Cauchy distribution with parameter α > 0 is the distribution on R with density α
π(α2+x2)

. If X

and Y are independent Cauchy random variables with parameters α and β respectively and a, b ∈ R s.t.

a2 + b2 6= 0 then aX + bY is a Cauchy random variable with parameter |a|α + |b|β. The characteristic

function of the Cauchy distribution with parameter α is φ(t) = exp(−α|t|).

Recall that given a vector measure µ ∈
(
NA1

)k
we defined µ = 1

k

k∑
i=1

µi. The µ semi-norm of y ∈ Rk is

given by

‖y‖µ =

∫
|
k∑
i=1

(dµi/dµ)yi|dµ̄.

By [20, Lemma 1] the function φµ : Rk −→ R given by φµ(y) = exp(−‖y‖µ) is the characteristic function
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of a probability measure Pµ on AF (µ) - the affine space generated by R(µ). By [20, Lemma 1], Pµ is

absolutely continuous w.r.t. the Lebesgue measure on AF (µ), and its density ξµ is a C0(Rk) function.

Recall that for every k ≥ 1 and x ∈ Rk we denote21 Υk(x) = x−x1k
‖x−x1k‖2

, and Sk⊥ =
{

Υk(x) : x ∈ Rk
}

.

Given µ ∈
(
NA1

)k
and the measure Pµ on Rk, define a the probability measure Qµ on Sk⊥ by

Qµ = Υk ◦ Pµ. (B.1)

If µ ∈
(
NA1

)k
is a vector of mutually singular measures then the measure Qµ is independent of the specific

choice of the vector measure µ, and we shall denote

Qµ = Qk. (B.2)

The Mertens value on EM can now be given using a simple formula: If f ∈ EMk, µ ∈
(
NA1

)k
, and

S ∈ C then (See Mertens [19])

ΦM (f ◦ µ)(S) =

∫
df(1k, x, µ(S))dQµ(x). (B.3)

For any economy E ∈ Eex there is k ≥ 2, C ⊂ Rk+, and µ ∈
(
NA1

)k
with Core(E) = C · µ. In this case

fC ∈ EMk
+ and the Mertens value of the economy E is given by

ΨM (E) = ΦM (fC ◦ µ). (B.4)

Denote by EMF the space of games generated by the games f ◦ µ with f ∈ EMk and µ ∈
(
NA1

)k
for

some k ≥ 2 s.t. µ is a vector of mutually singular measures. A close examination of the proof of the main

result in Haimanko [14] leads to the following Theorem:

Theorem B.1. If Φ is a value on EM then its restriction to EMF is the Mertens value.

Proof. Here explain how the Theorem follows from the proof of the main result in Haimanko [14]. Let Φ

be a value on EMF . As in [14, Remark 4], it follows from the anonymity axiom that if f ∈ EMk and

µ ∈
(
NA1

)k
is a vector of mutually singular measures then

Ψ(f ◦ µ) = cki (f)µi,

where the coefficients ck1(f), ..., ckk(f) are independent, for every k ≥ 2, from the specific choice of the vector

measure µ. Define, as in [14, Equation (20)], g(f) : Sk⊥ \ {0k} → Rk by

g(f)i(x) = df(1k, x, ei)

21We use the convention 0k
0

= 0k.
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for every 1 ≤ i ≤ k. Let V =
{
g(f) : f ∈ EMk

}
, and for g ∈ V let f(g) ∈ EMk be the unique element s.t.

g(f(g)) = g. Define for every g ∈ V and 1 ≤ i ≤ k

ψki (g) = cki (f(g)).

Following the same reasoning that follows [14, Equation (21)], we deduce that ψki is a positive projection

and thus there is a positive linear functional on B(Sk⊥\{0k}) that we shall denote by ψ
k
i s.t. ψki (g) = ψ

k
i (gi)

for every g ∈ V . By the Riesz representation theorem we have for every g ∈ C(Sk⊥ \ {0k})

ψ
k
i (g) =

∫
Sk⊥\{0k}

g(x)dλki (x),

where λki is a Borel probability measure on Sk⊥ \ {0k}. Thus, for every f ∈ HMk we obtain in the same

manner as in [14, Equation (24)]

ψ
k
i (g) =

∫
Sk⊥\{0k}

df(1k, x, ei)dλ
k
i (x). (B.5)

Notice that the proofs of [14, Lemma 3.5], [14, Corollary 3.9], [14, Remark 7], and [14, Lemmata 3.10-3.13]

remain valid. Thus it follows from [14, Lemma 3.14] that λki = Qk. Since Qk is absolutely continuous with

respect to the Haar measure on Sk⊥ \ {0k}, and for every f ∈ EMk the function g(f) is a.e. continuous on

Sk⊥, then by [14, Lemma 3.5] Equation (B.5) holds for every f ∈ EMk, and we are done.

C Conical Measures on L1(λ)

For every k ≥ 1 we denote by Bcon(Rk) the σ-algebra generated by open cones C ⊆ Rk based at 0k. For

every λ ∈ NA1 denote NAλ0 =
{
µ ∈ NA : µ(T ) = 0, |µ| � λ, dµdλ ∈ L

∞(λ)
}

. A conical measure Q on L1(λ)

is a finitely additive measure on conical sets22 of L1(λ) s.t. for every µ ∈
(
NAλ0

)k
the measure Qµ = Q◦µ−1

on Bcon(Rk) induces a countably additive measure on k-dimensional projective space. Recall that for every

k ≥ 1, every x ∈ Rk, and every nonempty J ⊆ {1, ..., k} we denote by πkJ(x) ∈ R|J | the projection of x on

the set of indices J .

Lemma C.1. Let Q =
{
Qµ ∈M1(Rk,Bcon(Rk)) : k ≥ 1, µ ∈

(
NAλ0

)k}
be a set of probability measures s.t.

1. for every k ≥ 1 and nonzero µ ∈
(
NAλ0

)k
the measure Qµ is invariant under reflections and

Qµ({0k}) = 0; and

2. for every k ≥ 1, every µ ∈
(
NAλ0

)k
, and every nonempty J ⊆ {1, ..., k} we have QπkJ◦µ

= πkJ ◦Qµ.

For every basic conical set E(µ,A) = µ−1(A) (where µ ∈
(
NAλ0

)k
and A ∈ Bcon(Rk)) let Q(E(µ,A)) =

Qµ(A). Then Q induces a conical measure on L1(λ).

22I.e., cylinder sets C s.t. χ ∈ C, a, b ∈ R⇒ a+ bχ ∈ C.
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Proof. The algebra of conical sets is generated by
∞⋃
k=1

{
E(µ,A) : µ ∈

(
NAλ0

)k
, A ∈ Bcon(Rk)

}
. Thus in

order to prove that Q induces a finitely additive measure on the algebra of conical sets it is sufficient to

prove the consistency of Q, i.e., if E(µ,A) = E(ν,B) for µ ∈
(
NAλ0

)k
, ν ∈

(
NAλ0

)`
, A ∈ Bcon(Rk), and

B ∈ Bcon(R`) then Q(E(µ,A)) = Q(E(ν,B)). Notice that

E(µ,A) = E((µ, ν), A× R`)) = E((µ, ν), A×B) = E((µ, ν),Rk ×B) = E(ν,B). (C.1)

Thus

Q(E(µ,A)) = Qµ(A) =
(
πk+`
{k+1,...,k+`} ◦Q(µ,ν)

)
(A) = Q(µ,ν)(A× R`) = (C.2)

Q(µ,ν)(A×B) = Q(µ,ν)(R` ×B) =
(
πk+`
{1,...,k} ◦Q(µ,ν)

)
(B) = Qν(B) = Q(E(ν,B)), (C.3)

where the first equality in line (C.2) and third equality in line (C.3) follow from condition (2) of the Lemma

and the last equality in line (C.2) and the first equality in line (C.3) follow from Equation (C.1). Thus the

consistency of Q follows. By the definition of Q it follows that Q ◦ µ−1 = Qµ on Bcon(Rk) is countably

additive for every k ≥ 1 and µ ∈
(
NAλ0

)k
, and by property (1) it follows that Q ◦ µ−1 induces a measure

on k-dimensional projective space. Therefore Q is conical measure on L1(λ).

Proposition C.2. There is a unique conical measure Q on L1(λ) s.t. for every vector of mutually singular

measures µ ∈
(
NAλ0

)k
and every θ ∈ Θ(λ)

Q ◦ µ−1 = Q ◦ (θµ)−1.

Furthermore, for every µ ∈ Zkλ we have

Q ◦ (µ− µ1k)−1 = Υk ◦Qµ,

where Qµ is the Borel probability measure on Sk⊥ given by Equation (B.3).

Proof. Choose a sequence (νn)∞n=1 ⊆ Z1
λ of mutually singular measures. Notice that for i 6= j, νi − νj 6= 0

with probability one, otherwise it would not induce a distribution on the zero-dimensional projective space.

For n ≥ 4 we may thus consider the sequence (fn)∞n=4 of random variables given by fn(χ) = (νn−ν1)(χ)
(ν3−ν2)(χ) .

For any permutation π on the integers that fixes n = 1, 2, 3, there is an automorphism θπ ∈ Θ(λ) s.t.

(θπfn)∞n=4 =
(
fπ(n)

)∞
n=4

. As Q is a conical measure, we deduce by Kolmogorov’s extension theorem that

there is a unique probability distribution P = Pν1,ν2,.... on the Borel sets of
∞∏
n=1

R that extends the distri-

bution of the finite sequences f4, ..., fn for every n ≥ 4. Notice that we have also proved that the sequence

(fn)∞n=4 is finitely exchangeable, hence by de-Finneti’s theorem (fn)∞n=4 is, conditionally on the σ-algebra

of tail events F∞, independent and identically distributed (i.i.d.), with some distribution F . Notice that,

by exchangeability, for any two different sequences (νn)∞n=1 , (ν
′
n)∞n=1 ⊆ Z1

λ of mutually singular measures
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with νi = ν ′i for i = 1, 2, 3, we have23 Pν1,ν2,... = Pν′1,ν′2,..., hence P = Pν1,ν2,ν3 . Thus for a.e. (hence every)

α ∈ [0, 1] the sequence (f4, ..., (1− α)fk + αfk+1, ...) has the same distribution as (fn)∞n=4. It follows that

for every α ∈ [0, 1], conditionally on F∞, the random variables (1− α)f4 + (1− α)f5, f4, and f5 have the

same distribution, and as f4, f5 are i.i.d. they have a stable distribution of index 1. Hence, conditionally

on F∞, (fn)∞n=4 is distributed as (m+ σUn)∞n=4 with m,σ measurable w.r.t. F∞ and (Un)∞n=4 are i.i.d.

Cauchy distributions. Notice that σ 6= 0 with probability 1 (otherwise ν4 = ν5 = ... = νk for any k ≥ 4

with some positive probability, a contradiction). Thus, conditionally on F∞, fn−f4

f6−f5
= Un−U4

U6−U5
for any n ≥ 7.

Hence the sequence
(
fn−f4

f6−f5

)∞
n=7

is distributed as
(
Un−U4
U6−U5

)∞
n=7

, proving that Pν4,ν5,ν6 is independent of the

choice of ν4, ν5, ν6, and therefore for every choice of ν1, ν2, ν3 we have Pν1,ν2,ν3 = P for some constant

distribution P .

Any conical set is determined by the ratios of such a finite sequence - where the νi’s are not necessarily

mutually singular - but can be taken as linearly independent. Thus we need the distribution of
(
νi
ν

)n
i=1

,

with ν1, ..., νn, ν ∈ NAλ0 , s.t. the measures ν1, ..., νn are linearly independent, and ν may be chosen as

mutually singular of ν1, ..., νn. These distributions are completely determined, via Fourier transforms, by

the distribution of all the linear combinations
n∑
i=1

ti
νi
ν with t1, ..., tn ∈ R. Thus we need only to determine

the distribution of µ
ν with µ, ν ∈ NAλ0 mutually singular and non-zero. But this is uniquely determined24

by the distribution of µ1−µ2

ν1−ν2
where µ1, µ2, ν1, ν2 ∈ Z1

λ are mutually singular.

D Rudiments of Functional Analysis

Here we give some functional analysis background that is essential for the understanding of the statement

and proof of some of our results. For further reading, one is advised to use the references.

D.1 Banach Lattices

A Banach lattice Z is a Banach space that is also a lattice, whose lattice structure is commensurable with

its Banach space topology, i.e., if 0 ≤ x ≤ y then ‖x‖ ≤ ‖y‖. A Banach lattice Z is a K-space if it is order

complete, i.e., if every nonempty and bounded from above (below) set A ⊆ Z has a least (greatest) upper

(lower) bound.

Example: For every 1 < p ≤ ∞, every standard measure space (I, C), and every λ ∈ NA1 the space

Lp(λ) is a K-space. In fact, if X is a Banach lattice then X∗ with its positive cone

X∗+ = {x∗ ∈ X∗ : ∀x ∈ X+, x
∗(x) ≥ 0}

is a K-space (see [5, p. 162]), and hence every reflexive Banach lattice is a K-space.

23Choose a third sequence (ν′′n)
∞
n=1 ⊆ Z

1
λ, s.t. the arrangement of (νn)∞n=1 and (ν′′n)

∞
n=1 into a sequence (µn)∞n=1 , and the

arrangement of (ν′n)
∞
n=1 and (ν′′n)

∞
n=1 into a sequence (µ′n)

∞
n=1 form sequences of mutually singular measures. By exchangeability

we deduce Pµ1,µ2,.... = Pµ′1,µ′2,... = Pν1,ν2,... = Pν′1,ν′2,....
24taking the Jordan decompositions of µ, ν.
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D.2 Vector Measures

A function F from an algebra F of subsets of a set Ω to a Banach space Z is called finitely additive vector

measure or simply a vector measure iff whenever E1, E2 ∈ F are disjoint then F (E1∪E2) = F (E1)+F (E2).

If, in addition, F (
⋃∞
n=1En) =

∑∞
n=1 F (En) in the norm topology of Z for all sequences (En)∞n=1 of pairwise

disjoint members of F s.t.
⋃∞
n=1En ∈ F then F is termed a countably additive vector measure or simply

countably additive.

The strong variation of F is the function ‖F‖ : F→ R defined by

‖F‖ (E) = sup
π

∑
A∈π
‖F (A)‖ ,

where the supremum is taken over all finite partitions of E into disjoint members of F. One may easily check

that ‖F‖ is a monotonic finitely additive measure. A measure F is of bounded variation if ‖F‖ (Ω) < ∞.

Furthermore,

Proposition D.1. [7, Proposition I.1.9] A vector measure of bounded variation is countably additive iff

its variation is also countably additive.

D.3 Operator Valued Integration

Let F be a vector measure on an algebra F of subsets of Ω with values in the Banach space L(Y, Z) of

bounded linear operators from Y to Z, where Y,Z are Banach lattices. Denote by SΩ,F(Y ) the set of simple

functions on Ω w.r.t. F taking values in Y , i.e. the set of functions of the form
∑n

i=1 aiχEi where Ei ∈ F

and ai ∈ Y for every 1 ≤ i ≤ n. The (Bartle) integral of the simple function f =
∑n

i=1 aiχEi w.r.t. F is

given by ∫
fdF =

n∑
i=1

F (Ei)(ai).

A measurable function f : Ω → Y is strongly F -integrable, or integrable for short, iff for every increasing

sequence (fn)∞n=1 of simple functions fn : Ω → Y with fn −→
n→∞

f pointwise ‖F‖-a.e., the limit ν(E) =

lim
n→∞

∫
fnχEdF exists in the strong topology of Z for every E ∈ F and is independent of the choice of

(fn)∞n=1. In that case we denote ∫
E
fdF = lim

n→∞

∫
E
fndF.

The following theorem is a version of the well-known Bartle bounded convergence theorem:

Theorem D.2 (Bartle Bounded Convergence Theorem). Let (fn)∞n=1 be a uniformly bounded sequence of

integrable functions fn : Ω → Y , and suppose that F above is countably additive of bounded variation. If
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(fn) converges ‖F‖-a.e. to f then f is integrable and

lim
n→∞

∫
fndF =

∫
fdF

in the strong topology of Z.

Proof. By Egorof-Lusin’s theorem [8, p. 520] for every ε > 0 there is a measurable subset E = E(ε) ⊆ Ω

s.t. ‖F (Ec)‖ < ε and (fn) converges uniformly to f on E. Let C > 0 be s.t. sup
x∈Ω
‖fn(x)‖ ≤ C for every

n ∈ N. Note that ∥∥∥∥∫
E
fndF

∥∥∥∥ ≤ C ‖F‖ (E)

for every E ∈ F, where ‖F‖ denotes the variation of F . Let N ∈ N be s.t. for every m,n > N and every

x ∈ E, ‖fm(x)− fn(x)‖ < ε. Then for every m,n > N we have∥∥∥∥∫ fmdF −
∫
fndF

∥∥∥∥ ≤ ∥∥∥∥∫
E

(fm − fn)dF

∥∥∥∥+

∥∥∥∥∫
Ec

(fm − fn)dF

∥∥∥∥ <
ε ‖F‖ (E) + 2C ‖F‖ (Ec).

As F is countably additive of finite variation we have ‖F‖ (E(ε)c)→ 0 as ε→ 0+, hence

lim
m,n→∞

∥∥∥∥∫ fmdF −
∫
fndF

∥∥∥∥ = 0, (D.1)

proving that the integrals form a Cauchy sequence in Z and hence convergence in its strong topology. As

for every sequence of increasing functions (gn)∞n=1 converging pointwise to f and ε > 0 there is measurable

subset E and N ∈ N s.t. |fn(x)− gn(x)| < ε for every x ∈ E and n ≥ N , and as ‖gn(x)‖ ≤ ‖f(x)‖ ≤ C for

every x, we deduce in a similar manner that lim
n→∞

∫
fndF = lim

n→∞

∫
gndF , hence f is integrable, and the

rest of the theorem now easily follows.

We also prove the following version of Fatou’s Lemma

Lemma D.3. Suppose Y is a K-space. Let (fn)∞n=1 be a uniformly bounded sequence of integrable functions

fn : Ω → Y . Suppose that the vector measure F is positive, countably additive of finite variation, and

Z = R. Then

lim inf
n→∞

∫
fndF ≥

∫
lim inf
n→∞

fndF.

Proof. Denote hn = inf
k≥n

fn and h = lim inf
n→∞

fn. Then (hn)∞n=1 is uniformly bounded sequence of integrable
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functions and hn −→
n→∞

h pointwise, hence h is integrable. Thus

∀n ≥ 1,

∫
Ω
fn(w)dF (w) ≥

∫
Ω
hn(w)dF (w) =

∫
Ω
h(w)dF (w) +

∫
Ω

(hn − h)(w)dF (w)⇒ (D.2)

lim inf
n→∞

∫
Ω
fn(w)dF (w) ≥

∫
Ω
h(w)dF (w), (D.3)

where the first inequality in line (D.2) follows by the positivity of F and line (D.3) follows from line (D.2)

as by the bounded convergence theorem D.2
∫

Ω(hn − h)(w)dF (w) −→
n→∞

0.

D.4 Representation of Bounded Linear Operators

Let Z, Y be Banach spaces, Ω a compact and Hausdorff space. If G is a measure on the Borel σ-algebra

BΩ of Ω taking values in L(Y,Z∗∗) then for every z∗ ∈ Z∗ we define the measure Gz∗ : BΩ → Y ∗ by

Gz∗(A)(y) = 〈G(A)(y), z∗〉 where 〈·, ·〉 is the usual pairing. The semi-variation |G|(E) of G on E ∈ BΩ is

given by |G|(E) = sup{‖Gz∗‖ (E) : ||z∗|| ≤ 1}.

Let T : C(Ω, Y ) → Z be a bounded linear operator. The following theorem, due to Dinculeanu and

Singer, is a fortification of the Riesz representation theorem:

Theorem D.4 (Dinculeanu-Singer). [7, p. 182] There exists a unique finitely additive measure G of

bounded semi-variation (i.e.- |G|(Ω) <∞), defined on BΩ with values in L(Y, Z∗∗) s.t. T (f) =
∫

Ω f(ω)dG(ω)

and,

(i) Gz∗ is a regular and countably additive Borel measure for each z∗ ∈ Z∗;

(ii) the mapping z∗ 7→ Gz∗ of Z∗ into2 C(Ω, Y )∗ is weak∗ to weak∗ continuous;

(iii) 〈T (f), z∗〉 =
∫

Ω f(ω)dGz∗(ω), for every f ∈ C(Ω, Y ) and every z∗ ∈ Z∗.

Remark D.5. Notice that if T is positive then its representing measure G is also positive. Indeed, for every

E ∈ BΩ choose a sequence of continuous functions (fn)∞n=1 ⊂ C(Ω, [0, 1]) with fn −→
n→∞

χE pointwise. Thus

for every two positive elements y ∈ Y and z∗ ∈ Z∗ we have

〈G(E)(y), z∗〉 = lim
n→∞

∫
Ω

(fn(ω)y) dGz∗(ω) = lim
n→∞

〈T (fny), z∗〉 ≥ 0, (D.4)

where the first equality in line (D.4) follows by combining property (i) of Theorem D.4 with the bounded

convergence theorem D.2 and the last inequality in that line follows from the positivity of T . Hence

G(E) : Y → Z∗∗ is a positive operator for every E ∈ BΩ.

2This space isomorphic to the space of regular countably additive vector measures of bounded variation on BΩ taking values
in Y ∗.
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