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Advantages of Cognitive Limitations1 

Yaakov Kareev 

Abstract 

Being a product of evolutionary pressures, it would not be surprising to find that what 

seems to be a limitation of the cognitive system is actually a fine-tuned compromise 

between a set of competing needs. This thesis is demonstrated using the case of the 

limited capacity of short-term memory, which is often regarded as the prime example of a 

cognitive limitation. 

Short-term memory (STM) can hold only a small number of items; originally 

estimated at 7±2 items, it is now believed to be closer to 4 or 5. Because STM is the part 

of the cognitive system that holds the information available for conscious processing, its 

capacity sets an upper limit on the size of the sample that may be considered to determine 

characteristics of the environment. Obviously, the smaller that size, the higher the risk of 

obtaining inaccurate estimates of important parameters. However, at the same time, it can 

be shown that the very same limitation also carries with it a number of advantages. 

First, small samples lead to systematic, and arguably beneficial, biases in the 

estimation of parameters that bear on the perception of regularity: Correlations are likely 

to appear stronger than they actually are and variances (i.e., risks) smaller than they 

                                                 
1 This paper is a chapter to appear  in Hammerstein, P. and J. R. Stevens, eds. 2012. Evolution and the 

Mechanisms of Decision Making. Strüngmann Forum Reports, vol. 11. Cambridge, MA: MIT Press 
(due out October, 2012). Work reported in this chapter was supported by Israel Science Foundation 
grants 539/2007 and 121/2011. 
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actually are. People have been found not to correct for these statistical biases, further 

implying that it is beneficial to perceive the environment as more regular than it actually 

is. Second, because decisions based on small samples are bound to result in occasional 

judgment errors and inconsistent behavior, the somewhat erratic behavior that inevitably 

results from the use of small-sample, error-prone data can benefit the organism in 

situations in which it is to the organism’s advantage to behave in an unpredictable manner 

(e.g., prey-predator interactions, repeated choices between service providers, other 

situations in which a mixed strategy is called for and auto-correlation between successive 

decisions is undesirable). Third, by relying on only a limited number of recent 

experiences, the organism is better attuned to changes in its environment. 

It is therefore maintained that what might look upon first sight as a major cognitive 

limitation, actually represents a fine-tuned compromise between a set of competing 

needs. 

Introduction 

Defining a characteristic of an information processing system to be a limitation is a tricky 

business. On one hand, one could easily propose how essentially any characteristic of the 

system could be improved: having three or four eyes would give humans a more 

complete picture of their immediate surroundings, faster neuronal transmission would 

speed up reactions, etc. In this respect, the current value of any characteristic of an 

information processing system might be regarded, almost by definition, as a limitation. 

On the other, increasing the amount of information available to the system—whether by 

way of the amount of input transmitted by a sensory organ, the amount of output resulting 

from internal calculations, or just the speed with which the same amount of information 



4 

 

is made available—may require system-wide changes, such as increased storage capacity 

or increased processing speed, which may require compromising some other aspects of 

performance. As a result of such considerations, many characteristics of the human 

information processing system are not considered limitations: neither having only two 

eyes nor the speed of transmission through the nervous system is regarded as a limitation. 

Here I will focus on what it takes for a characteristic of an organism's information 

processing system to be considered a cognitive limitation. No rules for this enterprise 

exist, of course, but I would like to propose a few. First, for a characteristic to qualify as a 

cognitive limitation, its value should impose a clear cost in terms of functioning relative 

to the level of functioning that could be achieved with other, more desirable (and 

potentially reachable) values of the same characteristic. Second, there should be some 

variability—inter-species, intra-species, or both—in the values of the characteristic, and 

there should be at least one way of moving from the undesirable range of values to a 

more desirable range, such as through actions by the individual (exertion of effort, 

learning), situational factors (education, changes in the environment), or easily 

envisioned evolutionary pressures. 

Of the characteristics that are commonly considered limitations of the cognitive 

system (e.g., processing speed, computational complexity or lack thereof, and memory 

capacity), none looms larger than the limited capacity of short-term memory (STM). This 

limit, reflecting a structural characteristic of the cognitive system, was first pointed out 

by G. A. Miller (1956) in his classical study “The Magic Number Seven, Plus or Minus 

Two.” There are numerous sophisticated measures of STM capacity (e.g., Engle et al. 

1999; Just and Carpenter 1992), but the uninitiated can easily get a feel for this limit by 
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considering the digit-span task, which is a component of the Wechsler Intelligence Scale 

for Children (Wechsler 1949). In this task, a tester reads a list of single digits at a rate of 

one digit per second and instructs the test taker to repeat the list in exactly the order it 

was read. The first list is short and easy to repeat (e.g., “3, 8, 6”). Another, longer list 

(e.g., “4, 5, 9, 2”) follows a correct repetition. Increasingly longer lists are read until two 

successive failures occur. The number of digits in the longest list correctly remembered 

serves as the estimate of the test taker's STM capacity. Analyzing people’s performance in 

a number of converging tasks, Miller estimated the STM capacity of normal adults to be 

around seven items, ranging from slightly less to slightly more depending on the 

characteristics of the individual and the specific task. Miller’s original observation 

generated enormous interest and follow-up research, and has become a cornerstone of 

cognitive psychology (Simon 1990). Although estimates of STM capacity vary—in fact, 

modern estimates place its value at four or five items (Cowan 2001)—it is uncontested 

that STM capacity is limited to a small number of items. 

Before getting further into a discussion of whether or not a limited STM capacity 

constitutes a cognitive limitation, it should be pointed out that, by imposing a relatively 

rigid constraint on information processing, the limited capacity of STM renders 

information processing quite robust: An important aspect, the amount of information 

likely to be considered when a judgment, decision, or choice is being made is unlikely to 

be much affected by extraneous factors such as context or (to some extent) even the 

ability or mood of the decision maker. 
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Is STM Capacity a Cognitive Limitation? 

The limited capacity of STM has obvious implications when one considers that STM is 

regarded to be the workspace of the cognitive system. Only items in it—whether selected 

from sensory input or retrieved from long-term memory—are actively available for 

processing. Once STM is full to capacity, any new information added necessarily pushes 

some information out. Therefore, a clear implication of this capacity limit is that one can 

simultaneously consider only a small number of items—whether they are observed in the 

outside world, retrieved from memory, or both. This, in turn, implies that the cognitive 

system can act on only a small sample of the information available at any time. Because 

the variance of the sampling distribution of any statistic is larger the smaller the sample, 

small-sample data are likely to result in inaccurate estimates, and give rise to 

disagreements between different people observing the same phenomena. The built-in 

inaccuracy that comes with small samples is orthogonal to the lack of bias in estimates of 

certain population parameters (more on that later). 

If we assume that having accurate estimates of our environment is essential for 

efficient functioning, the limited capacity of STM appears to be a major handicap, one 

that increases the chances of erroneous estimates, which would lead to sub-optimal 

decisions and actions. Furthermore, it is also a limitation by the other criterion I 

suggested earlier: First, there is natural variability in built-in STM capacity—more 

intelligent people have, on average, larger STM capacity than less intelligent people (e.g., 

de Jong and Das-Small 1995; Engle 2002; Jurden 1995), adults have larger capacity than 

children (e.g., Case et al. 1982; Huttenlocher and Burke 1976)—and STM capacity also 

varies with situational factors, such as cognitive load (Gilbert et al. 1988) or emotional 
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stress (e.g., Diamond et al. 1996). Second, there are ways to reduce the impact of the 

limitation: Although the number of items in STM is limited, the items themselves are 

chunks—units that have a reference in long-term memory. For example, the sequence G 

O L D B A R, read a letter at a time, may constitute 7 one-letter chunks for a person 

whose knowledge of English is limited to the names of the letters, but only two chunks 

(or just one) for people familiar with English words. Thus, whereas the number of chunks 

is limited, the amount of information per chunk can vary, depending on a person’s 

knowledge. This point was demonstrated in studies comparing laypersons' and chess 

masters’ memory for briefly presented board positions (Chase and Simon 1973; De Groot 

1965). 

To sum up, by the criteria suggested earlier, the limited capacity of STM is 

definitely a cognitive limitation: Its effects are costly, it has a range of values that vary in 

the severity of their implications for functioning, and there are well-defined processes 

that affect the value of this characteristic. 

However, although it is clear and uncontestable that the limited capacity of STM 

has some detrimental effects on performance, I will argue that the very limited capacity 

of STM, and the use of small-sample data that it imposes, has some effects that not only 

are not detrimental, but may in fact be outright beneficial. Some of these effects are 

obvious, and a brief discussion of them may suffice, while others are more subtle and 

require a more elaborate discussion. 
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Saving Search Cost and Time 

It is a truism that the expected accuracy of an estimate increases with an increase in 

sample size. It is therefore generally believed that better decisions are reached on the 

basis of a larger sample. However, making do with small samples saves search time and 

effort. Saving on search time translates into earlier choice and more time for enjoying the 

benefits of that choice. Such savings are even more important when a decision is taken in 

the context of a race for the possession or right of use of a unique, indivisible good (e.g., 

buying or renting a house, buying a used car, choosing a mate). In such cases, 

competitors who make do with less information, who spend less time on search and 

accept the risk of having made a non-optimal decision, may win possession or right of 

use of what would have been one’s eventual choice after collecting all the data necessary 

to reach a well-justified decision. Thus, shorter search and decision times are obvious 

advantages of the constraints imposed by the limited capacity of STM. Although the 

benefits in this respect are difficult to assess, it is clear that they mitigate the costs 

incurred by the inaccuracy of the estimates themselves. 

Furthermore, whereas search time and costs usually go up linearly with sample 

size, the expected accuracy of estimates increases linearly only with the square root of the 

size of the sample. As a result, the benefits of extra items diminish quickly. Indeed, 

analyses have shown that in judgment and choice tasks, accuracy quickly approaches an 

asymptote with a surprisingly small number of sample items (Hertwig and Pleskac 2010; 

Hertwig and Todd 2003; Johnson et al. 2001). Other indications that good performance 

can be built on relatively little data come from work on the effect of observing the 

behavior of a small number of neighbors and imitating the behavior of a successful 
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neighbor (Aktipis 2004; Morales 2002; Nowak and May 1992; Schlag 1999). Work on 

the implications of adopting the "Win—Stay, Lose—Shift" decision rule, a rule that bases 

decisions on the most recent outcome only (e.g., Nowak and Sigmund 1993; Posch 1999; 

Posch et al. 1999), also demonstrates that high levels of performance may be achieved 

while relying on little data. Other analyses of performance with relatively little data 

(Kandori et al. 1993; Sandholm 1998) also point to the fact that using small amounts of 

data is not very costly, if indeed it is costly at all.2 

Beneficial Effects of Biased Estimates 

Although sample statistics provide unbiased estimates of a population mean (and hence, 

also the difference between two means), they provide biased estimates of other 

population parameters—most notably variance and correlation. Moreover, for these latter 

parameters, the degree of bias is negatively related to sample size: The smaller the 

sample, the larger the bias. These biases are a statistical fact. Unlike the biases so much 

studied in the behavioral sciences (e.g., Kahneman et al. 1982; Gilovich et al. 2002), 

which are assumed to result from the biased processing of unbiased input, the biases that 

I am referring to here apply when the data are well sampled and the processing unbiased: 

By using sample data, one ends up seeing a systematically distorted picture of the world. 

                                                 
2In this respect, it is also appropriate to mention work that demonstrates, theoretically and empirically, that 
simple decision rules can lead to good performance. These studies include the initial work within the 
heuristics and biases framework, particularly work on the availability heuristic (for summaries of early 
studies, see (for summaries of early studies, see Kahneman et al. 1982; Tversky and Kahneman 1974), its 
later emphasis on biases notwithstanding; work in the tradition of the fast and frugal heuristics (Gigerenzer 
et al. 1999); work on simple learning rules in complex environments (Houston et al. 1982; McNamara and 
Houston 1985, 1987); and work on a simple heuristic that leads to regret minimization (Hart 2005; Hart and 
Mas-Colell 2000). Mention of this work has been relegated to a footnote because many of these simple 
rules or heuristics still rely on the accumulation of much data. 
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The two parameters for which sample statistics provide a biased estimate are the 

variance of a distribution and the correlation between variables. Both involve aspects of 

the regularity of the environment, and if their bias is not corrected for, the world is 

perceived as more regular than it really is.3 I argue that the biases these statistics 

introduce to one's picture of the world are likely to be beneficial. 

Assessment of Variance 

The variability, or heterogeneity, of a distribution—measured by the second moment 

around the mean4—is of great import for the organism: It provides an indication, for 

example, of the error (squared deviation) that is expected when predicting the mean, the 

risk that is assumed when taking an action, and the variety of strategies that may be 

called upon when having to deal individually with all items in a distribution (e.g., an 

instructor of a class of students). 

It is a well-known statistical fact, although one whose behavioral implications have 

hardly been considered, that sample variance is an attenuated estimator of the variance of 

the population from which that sample has been drawn. The attenuation, very familiar to 

practitioners of the t-test, is by a factor of (N–1)/N, where N denotes the sample size. To 

obtain an unbiased estimate of the population variance, σ2
x, one needs to apply the 

following correction: est(σ2
x)=(N/(N–1)) S2

x, where S2
x is the sample variance. The 

degree of the bias is small when N is large, but substantial for the size of the sample 

                                                 
3Interestingly, as long ago as 1620, Francis Bacon, in describing the "idols"—the bad habits of mind that 
cause people to fall into error—noted that people expect more order in natural phenomena than actually 
exists: "The human understanding is of its own nature prone to suppose the existence of more order and 
regularity than it finds" (Bacon 1620/1905:265). 
4In using this definition, I assume that variables are measured on interval or ratio scales, and that variance is 
the measure of variability. My arguments, however, also apply for variables measured on ordinal and 
nominal scales, or for measures of variability other than variance. 
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imposed by the limited capacity of STM: If one literally accepts the classical estimate of 

STM capacity, then adults observe, on average, a world that is only 6/7, or 86% as 

variable as it really is. Another way to consider this effect is to note that, for samples 

drawn from a normal distribution and consisting of 7 items, the estimated variance will 

be lower than the population variance 65% of the time. Thus, if uncorrected, small-

sample-based estimates of variability are likely to be lower than the true variability—to 

project a picture of a world that is more homogeneous, less risky, than it actually is. 

Of course, subjective perception need not reflect the (distorted) picture observed. 

The cognitive system could have evolved, or could learn, to apply some correction to 

estimates of the variability observed in samples, much as statisticians correct their 

estimates of variability. However, empirical studies addressing this question (Kareev et 

al. 2002) indicate that this is not the case: These studies compared performance in 

consequential decision-making tasks between people who had, or were likely to have at 

their disposal, samples differing in their size: In one study people with small STM 

capacity were compared with people with large STM capacity; in another people 

presented with small samples were compared to people presented with large samples; in a 

third study people who had a whole population in full view were compared to people who 

saw only a sample of the population. In all cases, people who saw, or were likely to rely 

on smaller samples behaved as if the variability of the population in question was smaller. 

Such results would not have been observed had people corrected for the bias introduced 

by the use of small samples (or if they had been altogether inattentive to variability). 

One implication of these findings is that people tend to underestimate risk and 

errors of prediction, and consequently feel more in control of their environment than they 
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actually are. The bias, which affects everyone, will be more pronounced among the less 

intelligent, children, and people under stress than among the more intelligent, adults, and 

people who are relaxed. The bias also implies that individuals will perceive others as 

more homogeneous than themselves, and out-groups as more homogeneous than in-

groups (Linville et al. 1989). 

Would such a bias benefit or harm the individual? It is difficult to answer this 

question. On the one hand, it is possible to claim that any bias is dysfunctional. On the 

other hand, consider the fact that feelings of control contribute to organisms’ physical and 

psychological well-being (Alloy and Tabachnik 1984; Langer 1975; Seligman 1975) or 

the claim that “cautious optimism” is a key to the risk-taking behavior and successful 

entrepreneurship that are so important for society (Selten 2001). It may be the case that 

the distorted view resulting from the use of small-sample data to assess variability 

provides just the right amount of distortion. 

Detection of Correlation 

The detection of correlations is one of the more important undertakings of the cognitive 

system. It underlies classical and operant conditioning, it promotes the emergence of 

concepts and provides the basis for learning about causal relationships. When correlations 

exist and are detected, they help understand the past, control the present, and predict the 

future (Alloy and Tabachnik 1984; Shanks 1995). Organisms could hardly be expected to 

negotiate the vast complexity of tasks facing them if they did not detect and utilize the 

relationships existing in their environment. What relationship could one expect to observe 

when drawing a sample of bivariate observations and calculating the correlation between 

them? As is the case with other statistics, the sampling distribution is more variable the 
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smaller the size of the sample on which it is based. Thus, when variables are actually 

unrelated, the use of small samples could well result in a false alarm—the “detection” of 

a correlation that does not exist. However, a very different picture emerges when one 

considers the sampling distributions of non-zero correlations and tries to infer 

relationships between variables that are in fact related. It is a well-established, though 

little known, fact that the sampling distribution of non-zero correlations is skewed, and 

increasingly so the smaller the samples on which they are based (e.g., Hays 1963). Figure 

10.1, based on the tables compiled by David (1954), presents the sampling distributions 

for a population correlation, ρ, of .50 for sample sizes of 4, 7, and 10. The skew is 

striking: The medians—at .59, .54, and .52, for the three sample sizes, respectively—and 

even more so the modes of the sampling distributions are more extreme than the true 

values, and the bias is stronger the smaller the sample size. To be sure, the means of the 

sampling distributions are all slightly less extreme than the population values, and the 

more so the smaller the sample. But, because initial impressions not only carry greater 

weight than later impressions (Hogarth and Einhorn 1992), but also often bias the 

interpretation of further information (Nickerson 1998), the fact that small-sample data, 

more often than not, produce estimates that are more extreme than the population 

parameters, but deviate in the right direction, is of great import. It points to the possibility 

that the limited capacity of STM acts as an amplifier of correlations (Kareev 1995).5 

 

                                                 
5The bias discussed is larger, the more extreme the true correlation. 
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Figure 10.1 The sampling distributions of the correlation coefficient, for ρ=.50, and for 

sample sizes of 4, 7, and 10. 

 

Empirical research (Kareev et al. 1997) lent support to this hypothesis, and further 

theoretical analyses (Kareev 2000) showed samples in the range of 7±2 items—the very 

range originally identified by Miller (1956)—to be of particular import in the detection of 

useful relationships between binary variables. These results point to the intriguing 

possibility that the limited capacity of STM in fact facilitates the detection of important 

relationships. The premise that organisms are intent on detecting effects when they exist 

(i.e., avoiding misses), even at the cost of making false alarms, sits well with recent 

findings that show people invest misses with greater value than false alarms (Kareev and 

Trope 2011; Wallsten et al. 1999; Wallsten and González-Vallejo 1994) and “design” their 

sampling procedures in ways that would increase the power of a statistical test, at the cost 
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of observing inaccurate, inflated sample values that they do not correct (Kareev and 

Fiedler 2006; Soffer and Kareev 2011).6 Theoretical analyses as well as experimental 

findings also support the notion that in reaching decisions, people rely on a small number 

of instances retrieved from memory (e.g., Selten and Chmura 2008; Stewart et al. 2006). 

The claims about the beneficial effects of small samples with respect to the detection of 

correlations also sit well with earlier accounts of the benefits of small capacity for 

perceptual (Turkewitz and Kenny 1982) and language (Elman 1993; Newport 1988, 

1990) development.7 

Being Less Predictable 

As has been pointed out time and again, when sample size is small, sample statistics –

hence, estimates of population parameters—are likely to vary. To an outside observer, 

behavior based on repeated small samples may look erratic and unpredictable. In 

previous sections of this paper, I assumed that it is to the organism’s benefit to obtain 

accurate estimates; in the present section, I point out that, in many situations—situations 

that involve interactions between agents whose interests do not completely match—being 

less than perfectly predictable may in fact be in the organism’s best interest. In such 

situations, the interests of the individual may be well served by the unavoidable reliance 

on small, error-prone estimates. 

                                                 
6With respect to the analysis put forward by Error Management Theory (Haselton & Buss, 2000; Haselton 
& Nettle, 2006; Nettle, in press), an implication of the limited capacity of STM is that over the whole range 
of decisions, Misses (False Negatives) are more costly that False Alarms (False Positives). Interestingly, in 
all the examples used by Nettle (in press) – examples apparently capturing natural and important decision-
making scenarios – this is indeed the case. 
7It should be noted that the claims about the correlation-amplifying effect of small samples have been 
challenged (Anderson et al. 2005; Gaissmaier et al. 2006; Juslin and Olsson 2005), but also that these 
challenges have been responded to (Kareev 2005). 
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Many interactions are of the pursuit-avoidance type, in which one agent wishes to catch 

another agent, whereas the latter wishes to avoid the former. Predators and prey, police 

and criminals, players of matching pennies (and of other games modeled by it)—all 

engage in such interactions. The prescription in such situations is to behave in a random, 

unpredictable manner—to employ, so to speak, a mixed strategy, or to engage in Protean 

defense (Driver and Humphries 1988; Humphries and Driver 1967, 1970). Use of small-

sample data renders one’s behavior noisier, and thus more difficult to characterize and 

predict. In this respect, the limited capacity of STM endows behavior automatically with 

a desirable characteristic. 

Erratic, unpredictable behavior is of even greater value in another important class of 

situations—those involving choices between adaptive agents who are eager to be selected 

by the decision maker. Examples of such agents include service providers, who are 

selected on the basis of the quality of their service, and employees who are competing for 

a bonus to be awarded on the basis of their productivity, as well as flowers, which are 

selected by pollinators on the basis of the quality and quantity of their nectar. In all cases, 

the decision maker’s main interest is to maximize his or her utility—to obtain the best 

service, the highest production, or the most nectar. Which monitoring regime should one 

employ to achieve that goal? A straightforward suggestion would be to employ full 

scrutiny: to observe each option numerous times, in order to obtain an accurate estimate 

of its value, and then choose the option with the highest value. However, when it comes 

to choices between adaptive agents that are eager to be selected by the decision maker, it 

can be argued that larger samples do not necessarily lead to better decisions. To see why, 

consider the owner of a small shoe factory, who has two employees producing shoes. 
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Wishing to increase production, the owner decides to offer a monthly bonus, to be 

awarded to that employee who produced more shoes during the month. How should 

production be assessed? Should the owner take stock of each day’s production and award 

the bonus on the basis of the monthly sum total? What effect would such a monitoring 

scheme have on the workers’ motivation? Given that the workers are likely familiar with 

each other’s productivity, it could turn out that neither of them would exert greater effort: 

The less productive worker would see no chance of outperforming the more productive 

one and would continue to produce at the previous level; the more productive worker 

would be likely to realize that and therefore not exert higher effort either. With such a 

scenario, the owner would indeed award the bonus to the truly deserving worker, but 

might end up paying the extra amount of the bonus without reaping any benefit. Now 

consider an alternative monitoring regime—minimal scrutiny. Suppose the owner 

announces that production will be assessed on the basis of one day’s production, with the 

crucial day chosen at random, separately for each worker, at the end of the month. With 

such a regime, if the distributions of daily production of the two workers overlap, the less 

productive worker does stand a chance of occasionally winning the bonus. Realizing that, 

he or she may work harder, to increase the overlap between the two distributions. Sensing 

the danger, the more productive worker may also try harder, to maintain or even reduce 

the overlap between the two distributions. With such a monitoring scheme, the principal 

will occasionally (but infrequently) commit an error, awarding the bonus to the less 

deserving worker, but may also bring about a more desirable situation. 

A formal analysis of similar situations has been advanced within the framework of labor 

markets and tournament theory (Cowen and Glazer 1996; Dubey and Haimanko 2003; 



18 

 

Dubey and Wu 2001). In all these studies it has been concluded that less, or even 

minimal, scrutiny can result in an outcome that is more desirable from the viewpoint of 

the decision maker because of the very uncertainty that a lower level of scrutiny 

introduces into the resolution process. An experimental test of the viability of this line of 

reasoning (Kareev and Avrahami 2007) demonstrated that in a two-person competition 

involving the performance of a routine, simple task, minimal scrutiny indeed resulted in 

higher performance; the effect depended on the existence of a bridgeable initial gap 

between competitors and showed up in competitive situations only. 

Increased productivity is not the only possible benefit of minimal scrutiny. As pointed out 

by Kareev and Avrahami (2007), by leading to the occasional reward of a weaker 

competitor, minimal scrutiny also helps maintain competition and sustain diversity. In 

contrast, the consistent choice of a currently superior option may eliminate weaker 

competitors altogether, eventually leaving the decision maker at the mercy of a monopoly 

or a provider with a limited pool of characteristics. 

Thus, by necessarily using small-sample data and therefore being susceptible to error, 

decision makers signal that they are error prone, or even “irrational”—that knowledge of 

the objective, prevailing conditions does not necessarily lead to successful predictions of 

their behavior. It is as if the decision makers announce, “I am not, I cannot be, fully 

rational. Take note of that and now act as you please.” The notion that irrationality can 

breed rational behavior and desirable outcomes sits well with work in game theory on 

equilibrium refinements (Myerson 1978; Selten 1975; see also the related work of Kreps 

et al. 1982). That work “indicates that rationality in games depends critically on 

irrationality. In one way or another, all refinements work by assuming that irrationality 
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cannot be ruled out, that the players ascribe irrationality to each other with a small 

probability. True rationality needs a ‘noisy,’ irrational environment; it cannot grow in 

sterile soil” (Aumann and Sorin 1989:37–38). Game-theoretic work on the role of 

bounded recall in fostering cooperation (Aumann and Sorin 1989) demonstrates another 

benefit of limited capacity. Thus, a cognitive limitation that introduces a grain of 

inconsistency or irrationality into behavior may act to bring about an environment that is 

more beneficial to the constrained decision maker. 

Detection of Change 

Thus far, I have assumed a static environment. In such an environment, the inaccuracy 

that necessarily results from limited capacity may still be viewed as a drawback, even in 

view of the benefits I have discussed. However, environments are hardly ever static; with 

the advent of time, many characteristics change in value: Whether constituting abrupt 

changes in quality—an inferior service provider becomes superior, a foe becomes a 

friend, a cooperator starts defecting—or gradual, periodic shifts—the yield of one type of 

flowers diminishes while that of another increases—changes abound. To function 

properly, to make sound decisions that respond to current conditions, organisms must 

continuously monitor the environment and act in a way that is responsive to changes in 

absolute and relative values (Cohen et al. 2007; Gross et al. 2008; Speekenbrink and 

Shanks 2010). It is obvious that using numerous observations and averaging over a large 

number of items may provide an inaccurate estimate of the current situation. As a result, 

the detection of change would be slow. Indeed, it has long been recognized by students of 

behavior that in changing environments, remembering too many past events is 

counterproductive (McNamara and Houston 1985, 1987; Rakow and Miler 2009; Shafir 
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and Roughgarden 1994). Furthermore, both human (e.g., Massey and Wu 2005) and 

animal (Gallistel et al. 2001; Shettleworth et al. 1988) studies of behavior in changing 

environments reveal fast adaptation to change. The adaptation is so fast, in fact, that 

Gallistel et al. (2001) explicitly state that it poses a challenge to any learning theory. In 

contrast to learning theories, which postulate that behavior reflects response propensities 

accumulated over all past experience, models of behavior that rely on small samples, 

observing the environment through a narrow window of the most recent events, monitor 

the environment continuously and adjust to change automatically. In fact, the detection of 

change is faster the narrower the window. To illustrate that last point, Figure 10.2a–d 

presents the predictions derived from two models of choice behavior. Both models—

“Win—Stay, Lose—Shift” (e.g., Nowak and Sigmund 1993; Posch 1999; Posch et al. 

1999) and “No-Regret—Stay, Regret—Shift” (Kareev, Avrahami, & Fiedler, in 

preparation)—take into account the last trial only. The graphs show how choice 

probabilities for two or three options change over time, both before and after a change in 

value is introduced. The important point is that although the two models employ different 

dynamics, and neither involves learning, both predict smooth changes with time and 

quick adaptation to change. Here, too, it is the apparent limitation which insures efficient 

and robust performance. 
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Figure 2b 
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Figure 2c 

 

Figure 2d 

 

Figure 10.2 Choice probabilities over time, as predicted by the “No-Regret—Stay, 

Regret—Shift,” and the “Win—Stay, Lose—Shift” models. Choices are either between 

two options, whose probabilities of providing a reward are .7 and .9 (a and b), or between 
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three options, whose probabilities of reward are .5, .7, and .9 (c and d). In all cases, initial 

choices are assumed random (no prior knowledge). The probabilities of reward change on 

trial 8. The reinforcement values, represented by black dots on the right, are asymptotic 

values following the matching law. Results are analytical, not simulations. 

 

Thus, with respect to the detection of change, relying on a small sample of recent events 

confers a real, uncontestable advantage. One may even speculate that a species’ STM 

capacity has been shaped, at least in part, in response to the amount of change that the 

species faces in its environment, with more change resulting in smaller capacity. 

Conclusion 

In conclusion, the argument put forward here is that, far from the being the cognitive 

limitation it may seem at first, the limited capacity of Short-Term Memory is in fact the 

result of multiple tradeoffs, and represents a compromise between the values that would 

be optimal for competing needs. 
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