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Summary: With four persons there is an example of a probability space
where 1) the space is generated by hierarchies of knowledge concerning a sin-
gle proposition, 2) the subjective beliefs of the four persons are continuous
regular conditional probability distributions of a common prior probability
distribution (continuous with respect to the weak topology), and 3) for ev-
ery subset that the four persons know in common there is no common prior
probability distribution. Furthermore, for every measurable set, every per-
son, and at every point in the space, the subjective belief in this measurable
set is one of the quantities 0, 1/2, or 1. This example presents problems for
understanding games of incomplete information through common priors.
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1 Introduction

Although the results of this paper belong to logic, combinatorics and prob-
ability theory, they were motivated by games of incomplete information. A
game of incomplete information is a game where the players have different
knowledge of some facts that are relevant to the outcome of the game. Card
games are games of incomplete information; chess is a game of complete
information. With games of incomplete information, one’s belief concerning
the belief of a fellow player can be more important than one’s own knowledge
of the facts. Witness the use of the bluff in poker; the certain knowledge of
the bluffing player that she has a loosing hand is secondary to her opponents’
belief that her hand is likely to be strong.

An equilibrium of a game is a set of strategies, one for each player, such
that no player does better by choosing a different strategy, given that the
other players do not change their strategies. In games of incomplete informa-
tion a strategy of a player is a function of what the player believes. For games
of incomplete information, there are two main approaches on how one should
evaluate the strategy choices of the players - descriptively, according to their
subjective beliefs, and proscriptively, according to a probability distribution
determined objectively by the game. Desirable is a synthesis, a way for the
players’ subjective beliefs and evaluations of strategies to be generated by a
common prior probability distribution. Such a synthesis is the central idea
behind the pioneering paper by J. Harsanyi (1967-8); here games of incom-
plete information are understood similarly to those of complete information,
ultimately through the existence of a common prior. A common prior allows
for a global understanding and evaluation that has profound implications for
the possible local situations of a game.

In a game of cards, the distribution of hands determined by a perfect
shuffle is common knowledge among the players. There is a bijection between
the subjective beliefs of the players and the hands that could be distributed
- a shuffle of the cards determines the hands and a hand of a given player
determines for that player a Bayesian conditional probability distribution on
the possible hands of the other players. But what if such a bijection does
not exist? How does one model a game where a player does not know how
the other players will form their beliefs?

Belief spaces model the uncertainty of players, concerning both the pa-
rameters relevant to the payoffs of the game and the beliefs of the other



players. Belief spaces are self referential in nature — a point in a belief space
is described by a parameter and for each player a subjective probability dis-
tribution on the belief space itself.

There are different ways to define belief spaces, and this paper concerns
itself with the Mertens-Zamir (Mertens and Zamir, 1985) definition. We look
at Mertens-Zamir belief spaces because they contain a nice relationship be-
tween subjective beliefs and common priors. A Mertens-Zamir belief space
is a compact space such that at every point and for every player there is
a subjective probability distribution on this space that is Borel and regu-
lar; furthermore for any fixed player this distribution changes continuously
with respect to the weak topology. A priori, no common prior is assumed.
Furthermore there is an underlying compact perameter set and a continuous
map from the space to this parameter set. Compactness and regularity per-
mit, for every such distribution, the existence of a “support” set, the smallest
compact set of measure one. For each player a self consistency condition is
required — if a point y is in the support of the subjective probability distri-
bution of this player at the point z, then at both x and y this player has
the same subjective probability distribution. The support sets add a combi-
natorial aspect to the players’ beliefs. A compact subset Y is called a belief
subspace when at every point y in Y every player’s support set for the point
y is contained in Y. A common prior of a belief subspace is a probability
distribution on this belief subspace such that the subjective beliefs inside this
subspace are conditional probability distributions of the common prior.

Define a cell of a Mertens-Zamir belief space to a minimal set C' with the
property that at every point y in C every player’s support set for the point
y is contained in C' (without the requirement that C' must be compact).

Our result is an example, involving four players, of a belief space (ac-
cording to the Mertens-Zamir definition) where there is a common prior, the
beliefs of the players are continuous, however there is no common prior de-
fined on any of the cells of the space. Furthermore, our space is strongly
non-redundant with respect to a finite parameter set; (see Section 2.1). Non-
redundancy means informally that any two distinct points differ at some level
of a hierarchy of belief generated initially by the given perameter set; strong
non-redundancy means the same with respect to hierarchies of knowledge.
(An example of part of a knowledge hierarchy would be the following: Adam
knows that the proposition p is true, Adam knows that Eve does not know
whether p is true.) Because the axioms of the Mertens-Zamir spaces are
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strong, our example would apply to most other formulations of belief spaces.

The example is constructed from a Kripke structure for the S5 multi-
person modal logic. For two players and one primitive proposition, we ex-
amine a special closed subset S of the space of maximally consistent lists of
formulas. This subset S is that where at every point both players consider
at most two points to be possible. S is homeomorphic to a Cantor set. We
consider the infinite dyadic group acting on the Cantor set, generated by
two involutions. We introduce two new players with partitions correspond-
ing, respectively, to the two-set orbits of these involutions. The orbit of any
point generated by the whole group is a dense subset of S. The meet par-
tition corresponding to the common knowledge of the four players contains
only cells that are countable and dense in S. To construct the subjective
beliefs of the players, if a player considers two points possible, she gives 1/2
~ 1/2 probabilities to these two points; otherwise all weight is given to the
only point considered possible. The partition structures for all four play-
ers are generated by measure preserving involutions that allow the 1/2 -1/2
assignment to be a conditional probability.

What could go wrong with such a construction? Starting with a Polish
space, a Borel probability distribution on this space as a common prior, and
a Borel field for each player, one can construct regular conditional probability
distributions for each player (Dudley, 1989; Theorem 10.2.2), but there is no
guarantee that there are such distributions with continuous versions, (such
an example is given in the last section. A regular conditional probability
distribution is a family of conditional probabilities, one for each Borel subset
to be evaluated, however perceived also as a function from the space €2 in
question to the space of probability distributions on €.) Given that one can
construct regular conditional probability distributions for the players that are
continuous with respect to the weak topology, there may exist new common
priors defined on many of the cells held in common knowledge. (Always there
will be regular conditional probability distributions of the original common
prior with respect to a sigma algebra generated by the cells, but the question
is whether they are compatible with those corresponding to the players. Our
result demonstrates a non-commutativity in the operation of creating a reg-
ular conditional probability distribution.) On the other hand, if one starts
with subjective beliefs that satisfy the desired properties there is no reason
in general why they should build a common prior, let alone confirm the one
already chosen.



Furthermore, without the non-redundancy conditions, it is much easier
(and not interesting) to find a belief space with the other desired properties.
After identifying points that are equivalent with respect to all hierarchies
of beliefs, the space could lose the other desired properties. Such would be
the case for our example if one were to discard the first two of the players
and keep the last two players that correspond to the generators of the in-
finite dyadic group — the Cantor set would collapse to two points. In our
example, the first two are the important players, because the beliefs of these
players make the space strongly non-redundant. Finding a Kripke structure
for two players such that their knowledge partitions could be the orbits of
measure preserving involutions and such that every point represents a unique
knowledge hierarchy was the major difficulty.

In understanding games of incomplete information modeled by belief
spaces one must consider the minimal subsets of the belief space that are
relevant to such a game. The smallest subset known in common (a cell) is
relevant to equilibrium behavior. The smallest subset on which there exists a
common prior distribution is relevant to the mutual consistency of the play-
ers and the definition of the game. Our results shows that these two sets can
be very different.

We consider our example to be a problem for the Hansanyi approach to
understand games of incomplete information through common priors. Given
a game modeled by our example, one cannot understand the game through
common priors, because the common knowledge of the players is beyond that
of any common prior. On the other hand, there is nothing mutually incon-
sistent about the beliefs of the players that could to be corrected through a
process toward a better common understanding of the game. Our example
suffers not from a lack but from an excess of common knowledge.

To illustrate the problem, define a game I' modeled on a belief space S
with a common prior 4 in the following way. Let X be the finite perameter
space, ¥ - S — X a continuous function, N the finite player set, and for each
j €N :S — A(S) are the subjective beliefs of Player j. For each player
7, there is a finite action set A’ with n/ := |A’|. There are |X| different
n' x ... x n!Vl matrices corresponding to the set X, every entry of every
matrix is a vector pavoff for the players in R"Y. Nature chooses a point in S
according to the common prior y, which means also that a parameter in X is
chosen through the function ¢». The players choose actions in their respective
AJ independently, and after the choices are made the payoff to the players




is the vector entry corresponding to their actions and nature’s choice of the
parameter in .X'. An equilibrium for a point z in the belief space is an |N|-set
of functions (f7 | j € N), each f7 from the cell that contains z to A(A?), the
simplex of mixed strategies, with the following properties for every player
JEN

1) f7 is constant within all support sets of Player j,

2) for all j' # j within the support set of #/'(z) the function f7 is t/'(z)
measurable, and

3) within the support set of #/(z) Player j can do no better than f/(z) €
A(A7) in response to the other functions f7', j' # j, as evaluated by /(z).
When the |N|-set of functions is an equilibrium for all points in a cell, then
we call it a cellular equlibrium. A global equilibrium is a set of functions
(ff S = A(AY) | j € N), each f7 measurable with respect to the Borel
field on S generated by Player j’s continuous beliefs, such that no player can
attain a higher expected payoff as evaluated by p by choosing another such
measurable function, (given that the strategies of the other players do not
change).

A collection of cellular equilibria, one for each cell, will also define an
equilibrium valid at all points of our belief space. In our example, every
player at every point has a discrete subjective probability distribution (with
support sets that are either singletons or two-sets), and therefore there are no
measurability conditions to a cellular equilibrinm. The collection of all cells
adds no new conditions on the strategy functions, so that the only condition
on a player’s strategy function is that it must be constant within any of her
finite support sets. Therefore there may be equilibria of the game I' (perhaps
preferable in some ways to the global equilibria), for which an evaluation of
the payoffs according to the common prior may not be possible. Indeed,
because the space of measurable functions available to a player with the L,
norm (with respect to the common prior) is not compact, it is plausible that
there exist no global equilibria for the game I', yet cellular equilibria could
exist for all points of the space. To escape this potential crisis, we may prefer
to perceive I' as a collection of uncountably many independent games, one
for each cell. Although we must understand equilibria independently for each
cell, the game I' cannot be broken down into uncountably many independent
games, one for each cell, because there is no probability distribution for
choosing a point once a cell has been chosen.

In the next section we introduce the necessary background for construct-



ing our example: Mertens-Zamir belief spaces, the S5 modal logic of interac-
tive epistemology, Kripke structures, and a canonical hierarchical construc-
tion of finite Kripke structures. In Section 3 we present the two-person Kripke
structure on which our example is based. Lemma 3 is the central lemma of
this paper; it shows that our hierarchical construction of the Kripke structure
grows evenly by a fixed power of two. In Section 4 we define our four person
example by building upon Section 3. In Section 5 we prove our main results.

In conclusion, Section 6, we consider the assumption in Mertens and Za-
mir (1985) that the subjective beliefs are continuous (with respect to the weak
topology). We present a relatively simple example of continuously defined
one-player uncertainty on a Cantor set with a non-atomic prior distribution
such that positive mass is given to all non-empty open sets, yet there is no
continuous regular conditional probability distribution. This example may
demonstrate an external limitation of the Mertens-Zamir spaces to model
multi-player uncertainty.

2 Background

In this paper we will assume that all belief spaces are Polish spaces; we can
assume that there is no distinction between the Baire and Borel sets and
measures and the regularity of all Borel measures can be assumed. A(S)
stands for the space of regular Borel probability measures on S. Unless
otherwise stated, the measurable sets of a topological space are the Borel
sets generated by its topology. The topology for a A(S) will be the weak
topology.

Due to the unique perspective on conditional probability explicit in belief
spaces, a regular conditional probability distribution on a topological space
S will be represented in an unorthodox way as a function from S to A(S).
Given a probability distribution g € A(S) and a Borel field G, a function
f:S — A(S) is a regular conditional probability distribution for 1 and ¢
when for every fixed Borel set A the function f(-)(A4) — [0, 1] is measurable
and for every set B € G we have [ f(z)du(z) = p(AN B).

We call a partition P of a topological space D upper (respectively lower)
semi-continuous if the set valued correspondence that maps every d € D
to the partition member of P containing d is an upper (respectively lower)
semi-continuous correspondence. (We follow the definitions of Klein and



Thompson, 1984.) Upper and lower semi-continuity of a correspondence
between Polish spaces implies Hausdorff continuity of the correspondence.

2.1 Mertens-Zamir Belief Spaces

A Belief Space (Mertens and Zamir, 1985) is a tuple (S, X, ¢, N, (¢ : | j €
N)), where X is a compact parameter set, S is a compact sef, ¥ is a con-
tinuous map from S to X, N is a finite set of players, for every j € N
1 :— A(S) is a continous function (with respect to the weak topology), and
for every player j and every pair of points 5,5’ € S if s’ € support (¢/(s))
then t/(s) = #7(s').

A belief morphism between two spaces (S, X,¥, N,(# : | j € N)) and
(S, X,4,N,(# : | j € N)) is defined to be a pair of functions ¢ : X — X
and ¢’ : S — S such that g o) = Yod S — X and for every player j € N
doth =tiod + S — A(S), where ¢/ : A(S) — A(S) is induced canonically
from ¢', (Mertens and Zamir, 1985).

A subspace of a belief space (S, X, %, N, (#/ : | j € N)) is defined to be a
subset C' C S such that C is compact and for every s € C' and every player
j € N support (#(s)) C C. The subspace C is a belief space itself, with the
functions #/|¢ and 1 |¢ those inherited from the original belief space through
restriction.

Starting with any compact set X and player set N, Mertens and Zamir
(1985) construct a canonical belief space corresponding to X and N through
belief hierarchies. Given a beliefspace (S, X, 4, N, (# : | j € N)), define F to
be the smallest sigma algebra of subsets of S for which v’ is measurable with
respect to F and for every player j € N and every B € F ¢/(-)(B) : S — [0, 1]
is measurable with respect to F. They define a belief space to be non-
redundant if the sigma algebra F separates all distinct pairs of points of S.
They prove that any non-redundant belief space is isomorphic (with respect
to belief space morphisms) to a subspace of their canonical belief space.

Define F to be the smallest sigma algebra of subsets of S for which 1 is
measurable with respect to F and for every player j € N and every B € F
the set {z | support(t/(z)) C B} is in F. We define a belief space to be
strongly non-redundant if the sigma algebra F separates all distinct pairs of
points of S.

Of special interest to this paper is the definition of mutual consistency for
Mertens-Zamir belief subspaces. For every player j € N and any subspace



Y C S define 77 to be the smallest Borel field of subsets of ¥ such that the
function #/]y- is measurable. A probability distribution g on the subspace
Y is defined to be consistent if for every Borel subset 4 C Y we have that
w(A) = [y ¥ (y)(A)du(y). Mertens and Zamir (1985) showed that consistency
is equivalent to the stronger statement that for every B € 77 and Borel subset
A CY we have p(ANB) = [t/ (y)(A)du(y). A belief subspace C' is defined
to be consistent if there is a consistent ;. on C such that the support of p
is equal to C. Starting at any point y € S, we can define for every player
j € N the sets C? (y) inductively by CJ(y) := support (#/(y)) and for i > 2
Cl(y) == C1(1) Usees_ (), rew SuppOTE (t*(§)). Define the set C7(y) to be

U2, CY(y). Given that a subspace Y is finite, Mertens and Zamir proved that
the consistency of Y implies that

1) for all y € ¥ and pairs of players j,k € N Ci(y) = C*(y),

2) CI(y) for all j € N is the smallest belief subspace containing y, and

3) there is a uniquely determined consistent distribution for the set C7(y),
namely that induced naturally from px.

Our example is a refutation of 2) and 3) for infinite and consistent Y.

2.2 Formulas and Modal Logic

Let X be a finite set of primitive propositions and N the set of players.
Construct the set £(X, N) of formulas using the finite sets X and /V in the
following way:
1) If z € X then 2 € L(X, N),
2) If g € L(X, N) then (~g) € L(X, N),
3)If g,h € L(X,N) then (¢ Ah) € L(X,N),
4) If g € L(X, N) then k;g € L(X, N) for every j € N,
5) Only formulas constructed through application of the above four rules are
members of L(X, N).
We write simply £ if there is no ambiguity. We define g vV h to be =(—g A—h)
and ¢ — htobe ~gVh. E(f) = EY(f) is defined to be Ajenk; f. E°(f) = f,
and for i > 1, E'(f) := E(E"!(f)). ¢ = h means that the truth of g implies
the truth of h, and —k;(—f) means that j considers the truth of f to be
possible.

A formula f € L£(X,N) is common knowledge in a subset of formulas
ACL(X,N)ift E"f € A for every n < oc.



Throughout this paper, the multi-agent epistemic logic S5 will be as-
sumed. For a discussion of the S5 logic, see Cresswell and Hughes (1968);
and for the multi-agent variation, see Halpern and Moses (1992) and also
Bacharach, et al, (1997).

A set of formulas A C L(X, N) is called complete if for every formula
f € L(X,N) either f € Aor -f € A. A set of formulas is called consistent
if no finite subset of this set leads to a logical contradiction, meaning a
deduction of f and —f for some formula f. We define

Q(X,N) :={S C L(X,N) | S is complete and consistent}.

Any consistent set of formulas can be extended to a complete and consistent
set of formulas, a property we call the Extension Property, proven by applying
Lindenbaum’s Lemma.

We define a topology for 2, the same as in Samet (1990). For every f € £
define a(f) :={z € Q| f € z}. Let {«(f) | f € L} be the base of open sets
of . (A topology is defined by the fact that «(f) N a(g) = a(f Ag)). The
topology of a subset A of Q will be the relative topology for which the open
sets of A are {ANO | O is an open set of Q}. For any subset D C , D will
stand for the closure of D. Notice that the Extension Property implies that
(1 is compact.

For every agent j € N we define its knowledge partition Q'(X,N) to
be the partition of (X, N) generated by the inverse images of the function
B9 — 265N the set of subsets of £(X, N), defined by 4/(z) := {f €
L(X,N) | k;f € z}. We will write Q7 if there is no ambiguity. A possibility
set is defined to be a member of Q7 for some j € N. Notice that every
possibility set is compact.

Let Q = A, Q7 be the meet partition of the Q7. A member of Q we call
a “cell”.

The following lemma is in Simon (1999), but all the components of the
proof can be found in other papers (Lemma 4.1 of Halpern and Moses 1992,
Aumann 1999):

Lemma A: For any cell C' of Q(X,N) {f € L(X,N) | f is common
knowledge in z for some z € C'} = {f € L(X,N) | f is common knowledge
inzforallze C}={f€ L(X,N)| fezforall z€ C}.

Due to Lemma A, we have a map F' from the meet partition Q to subsets
of formulas defined by F(C) := {f | f is common knowledge in any (equiva-
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lently all) members of C'}. We say that C'is centered if and only if C' is the
only cell that corresponds to F'(C).

For any subset of formulas T C £ define Ck(T') := {f € L | there exists
an ¢ < oo and a finite set 7" C T with (A E*(t)) — f a tautology }. We
define 7(X,N) = {Ck(T) | T C L(X,N)}\ {£L(X,N)}, and we say that T
generates C'k(T'). If there is no ambiguity, we can write simply 7. Ck(T)
is the set of formulas whose common knowledge is implied by the common
knowledge of the formulas in T'.

For every set of formulas T C £ define the set

CKk(T) := {2z € Q| every member of T is common knowledge in z}.

Forany T'C L, Ck(T) is a closed set, since the Ck(T') is the intersection of
the sets a(E!'f) for all | < oo and all formulas f in 7.
The following two lemmatta and Theorem 0 are proven in Simon (1999).

Lemma B: Ck is a closure operator on the subsets of £, meaning that
Ck(T) = T if T is already a member of 7. Furthermore, the image of
F:Q — 2% is a subset of 7.

Lemma C: If C'is a cell and S = F(C), then C' = Ck(S).

Theorem D: (from Theorem 1 of Simon 1999) A cell C' is centered if
and only if C' contains an open set of C'; and if C' is not centered then there
exist uncountably many cells ¢’ with F/(C") = F(C).

Our example is constructed from a Ck(T') such that 7" is maximal in T,
Ck(T) is topologically equivalent to a Cantor set, and there are uncount-
ably many cells in Ck(T'), all of which are un-centered and dense in Ck(T).
Another example of this kind can be found in Simon, (1997).

2.3 Kripke structures

In this paper, a Kripke structure is a quintuple KX = (S; N; (P? | j € N); X))
where N is a set of agents, for each j € N PJ is a partition of the set S,
X is a set of primitive propositions, and ¢ : X — 2° is a map from X to
the subsets of S, such that for every x € X the set ¢ (x) is interpreted to be
the subset of S where x is true. (The usual definition of a Kripke structure
1s more general, but this more restricted usage applies to the S5 logic.) We
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define a map o : L(X, N) — 2 inductively on the structure of the formulas
in the following way:

Case 1 f=r€ X: o(x) = w(:t)

Case 2 f = - a<>= " (g),

Case 3 f=gAh: &(f) = a(g) Na™(h),

Case 4 f =k;(9): K() s|sePePi=PCaryg)}

We define a map ¢* : S — Q(X, N) (see Fagin, Halpern, and Vardi 1991) by

0" (s) = {f € LIX,N)) | s €a™(f)}.

We are justified in using again the notation « for the following reason.
Consider the map 1 : X — 2% defined by ¢(z) == {z € Q| v € z}. We
have a Kripke structure Q = (Q; N; QY ..., Q" X; ). (Due to its canonical
nature, we index this Kripke structure Wlth Q.)

Theorem E: For every f € L(X,N), f is a theorem of the multi-agent
S5 logic if and only if f is a tautology. Furthermore, ¢*(z) = z for every
z € (.

For a proof of the first part of this theorem, see Halpern and Moses (1992)
and Cresswell and Hughes (1968), and for how the second part follows from
the first part see Aumann (1999). We will call this result the “Completeness
Theorem.”

2.4 Canonical Finite Models

We define the depth of a formula inductively on the structure of the formulas.
If + € X, then depth (z) := 0. If f = —g then depth (f) := depth (g); if
f = g A h then depth (f):= max (depth (g) , depth (h)); and if f = k;(g)
then depth (f):= depth (g) +1

For every 0 < i < oo we define £, := {f € L | depth (f) < i} and
define 2; to be the set of maximally consistent subsets of £,. If there may
be ambiguity, we will write Q;(X, N). We must perceive an {2; in two ways,
as a Kripke structure in its own right and as a canonical projective image of
{2 inducing a partition of Q through inverse images. We define 7; : Q@ — €);
to be the canonical projection 7;(z) := 2 N L£;. Due to an application of
Lindenbaum’s Lemma, the maps 7, are surjective.

For every 0 < ¢ < oo we consider the Kripke structure Q; = (Q;; X;¢,; N

(.7:] | j € N)), where 1), = 7, 09 and for i > 0 the partition ]—‘f of €, is
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induced by the inverse images of the function 7 : Q; — 25-1(5N) defined
by B(w) == {f € Li1(X,N) | k;(f) € w}. We define Fy = {Q} for every
Jj € N.

Now we consider §2; again as a canonical projective image. A, is defined to
be the partition of ) induced by the inverse images of 7;, A; == {7, ' (w) |w €
;}. By the definition of €, the join partition V2, .4, is the discrete partition
of 2, meaning that it consists of singletons. Let F/ be the partition on €,
coarser than A;, defined by F/ := {x;}(B) | B € F}}. From the definitions
of the Q; and the F/ it follows that VX, F/ = QJ.

An i- atom (or just atom) is a member of €.

Since X and N are finite, there are several important properties of the
Kripke structures (2;, all of which are used in this paper.

(1) €, is finite for every 0 < i < co. (For a more general statement, see
Lismont and Mongin 1995.)

(ii) For every i-atom w € €); we can define a formula f(w) of depth i or
less such that o (f(w)) = {w}, meaning that the formula f(w) is true with
respect to ; only at w € ;. This follows from the finiteness of €2;, and
implies that {A | 4 € A;,i > 0} = {7 (mi(w)) | w € Q;,i > 0} form a basis
for the open sets of 2. For any subset A C Q; define f(A) := Vyeaf(w), a
formula that is true with respect to €2; only in the subset A.

(iii) It is easy to extend an i-atom to an i + l-atom. Fix 0 <7 < oo and
w € Q. For every j € N define F] by w € F] € F,. If (M] | j € N) are
subsets of (I} | j € N), respectively, such that
1) w € M] for every j € N, and
2) for every B € A, F) Nm(B) # ¢ implies that M/ N x,(B) # 0,
then there is a unique v € ;11 such that 7 o 7.4 (v) = w and for every
u €Sl —kjf(u) €vifand only if u € Nfij. Furthermore, this is the only
way to extend a member of {); to a member of €2, ;; this is Lemma 4.2 of
Fagin, Halpern, and Vardi (1991). For any ¢ > 0 and v € Q4 with k > ¢
we define M/ (v) == {u € Q; | ~k;~f(u) € v}. Notice that if w € F € F
then M7 ,(w) is equal to m;_; o 7;1(F), which could be a proper subset of
the member of F/_, that contains m;_; o 7, (w).

(iv) For every formula f € £; and [ > i 7, Y (a™(f)) = o(f). This
follows from (iii) and the Completeness Theorem. (See also Lemma 2.5 in
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Fagin, Halpern, and Vardi 1991.)

3 Two-Bounded Knowledge

Lemma 1: The partitions @’ of Q are upper and lower semi-continuous.

Proof: Assume that zj, zo,. .. is a sequence of points in  converging to
z€Q,andforall [ >1let zy € F,€ @, and z € F € Q7.

Let w be any k-atom such that 7, '(w) N F # (). By Property (iv),
—k;=(f(w)) € z, and therefore there is a number [’ such that [ > I implies
that —k;=(f(w)) € 2. This means also that F; N7 (w) # 0 for all | > I/,
the lower semi-continuity of Q7.

Let y be a cluster point of the intersection of an infinite subset of the
F; and let wy be the k-atom with m(wy) containing y. Given that z €
Tit1(mrs1(2)) for all I > I', we have infinitely many [* > I’ such that
—k;=f(wg) € z+ This implies by Property (iv) that —k;—f(wy) € 2. This
true for all £ implies that y € F, the upper semi-continuity of Q7. 0

For all i < oo define the subset of k-bounded i-atoms Zf C €); inductively
in the following way:
Ay = Q,
for every i > 0w € qf if and only if for every j € N and 7, (w) € F € F!
it follows that 7, o 7, }(F) is a subset of Zf_l and |m;_y o N(F)| < k.
Following the definition of k-bounded atoms, define a member F of ]—"f to be
k-bounded if and only if 7r;_jom; ! (F) is a subset. onf_l and |m;_jom H(F)| <
k. Define Ty C £ to be the set of formulas {f(A}) | i < oo}

Lemma 2: Ck(7}) is the union of all cells C satisfying |F| < k for all
possibility sets F' contained in C.

Proof: Since V2 A; is the discrete partition of Q, if z € F € Q7 and
|F| > k then |m,—,(F)| > k for some i < co. Let F* € F/ contain z. Since
i (F*) = m o (F), f(qf) won’t be true at z, and 7} cannot be common
knowledge in the cell containing z.

On the other hand, if T} is not common knowledge in a cell C, then by

Lemma A there is soine z € C and some i < oo such that f(Af) 1s not true at
z. By Property (iv) this implies that the i-atom w € ); satisfying w = 7;(z)
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is not a k-bounded atom. By induction there is an [ <4, a v € ) and an
F € F/ such that v € m(F) € F|, 77 (v) N C # O and |71 (F)| > k. By
Property (iv), for any 2’ € ;' (v) with 2/ € F* € Q7 we have |F*| > k. O

Lemma 3: Assume that [N| = 2.

(a) Ifi > 1, F € F/ is two-bounded and v € m,_;(F) then there are 21X
two-bounded members of ; in 7; o 77} (v) N7 (F).

(b) For every two-bounded w € F € F) there are 2 two-bounded mem-
bers of F/,, contained in 7; '(F) with non-empty intersection with ;! (w).

() There are 2% members of A = Q) and for every i and every w € A.

there are 41 members v of A-, | such that ;0 7} (v) = w.

Proof: We proceed to prove (a) and (b) together by induction on i.
For i = 0 we need to prove only (b). For every w € € there are exactly
28— 1 two-subsets of )y containing w and one one-subset of Qy containing
w, namely {w}.

Now assume that both claims are true for i —1 > 0.

(a) Let F” be the two-bounded member of /| containing 7"}, (v) for j’
j. By the induction hypothesis and (b) there are 2/*1 different two-bounded
members of F/ contained in F’ and intersecting 7 '(v). By Property (iii)
each one combined with F' defines a two-bounded atom of {); contained in
7;(F) and extending v.

(b) Case 1; |m;_1o7m; '(F)| = 2: Let F be ;' (F). Let v be the member
of m;_1(F) such that m;_; o 77 }(w) # v. By (a) there are 21*1 different two-
bounded i-atoms contained in m;(7;7} (v)) that are also members of . This
means that there are 21! different two-subsets of F such that one member
is in 7;(7; ' (v)) and the other is w.

(b) Case 2; m;_; om '(F) = {u} with u € Q;_1: By (a) there are
2X1 two-bounded members of ©; in F. There are 21X — 1 two-subsets of F
containing w € €); and one one-subset containing w, namely {w}.

(c) follows directly from a,b, and Property (iii). O

Additionally, Lemma 3 shows that Ck(T;) C Q(X,N) for [N| = 2 is
topologically equivalent to a Cantor set.



4 The Example

We restrict ourselves to the case of |[X| =1 and X = {z}, and define the
set S to be Ck(Ty) C Q({z},{1,2}). There are two inverse projections
of 0-atoms in S and from Lemma 3, for every ¢ > 0 and ¢-atom w with
7Y (w) N Ck(Ty) # 0 there are 4 different inverse projections of i + l-atoms
in Ck(T3) contained in 7, ' (w).

For every + > 0 and j = 1, 2 define a half i-atom of player j to be a pair
u, v of distinct i + l-atoms such that 7; o 773} (u) = m; 0 73} (v) and u and v
share the same member of F,_ .

The player set is N = {1,2,3,4}. Before we introduce the two additional
players 3 and 4, we look at a standard representation of the Cantor set and
a group action on it.

Consider the Cantor set D := {0,1} x (aj,ay,...) such that a; € {0,1}
for every 1 < i < o0, (ay,a9,...,q;) will stand for the number (ay,as,...)
where @, = 0 for all & > [. Consider the dyadic sum on {0,1}* with the
carrying of numbers to the right, e.g. the dyadic sum of (1,1,1) and (1,0, 1)
is (0,0, 1,1). Define an addition on D in the following way: (ag;ay,as,...)+
(bo; by, b, ...) = (ap +by modulo 2 ; ¢, o, ...) where (c1, ¢o,...) is the dyadic
sum of (a1, aq,...) and (by, b,...). Next consider the following two invo-
lutions 01,00 : D — D defined by o1(d) := —(d + (1;1)) and o3(d) :=
—(d + (1;0)). One can consider o; and o, as the generators of the infinite
dyhedral group acting on D, and for every d € D the orbit of this group
action on d is dense in D.

We choose a homeomorphism v from D to Ck(7T,) C Q(X,{1,2}) to
correspond to the structure of 2. The zero coordinate of the dyadic ex-
pansion corresponds to the validity of the proposition z; for every i > 0
the 2¢ — 1 coordinate corresponds to a half i- atom of Player 1 and the
2¢ coordinate to a half i-atom of Player 2, so that these pair of coordi-
nates correspond to a ¢-atom in Z?. We define two additional partitions P?
and P* of Ck(T,) corresponding to the knowledge of a third and fourth
agent. Define P? = {{z,v0 0,077 Y(2)}|z € S = Ck(Ty)}, and like-
wise define P* with o,. For j = 1,2 define P’ to be the partition Q7
on Q({zx}, {1,2}) restricted to S = Ck(Ty). We have a Kripke structure
(S = Ck(Ty); X: s N = {1,2,3,4}; P*, P2, P3 P*). Since both o, and o,
are continuous functions from D to D, all the partitions P’ are upper and
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lower semi-continuous.

For every Player j we define a function ¢/ : S — S by ¢/(z) = z if {2} €
P7 and ¢/(z) = y given that {y,z} € P’ and y # 2. Because the partitions
PJ are upper and lower semi-continuous, the functions ¢’ are continuous.
Furthermore the functions are involutions, meaning that ¢’ o ¢’ = id.

We define the probability distribution g on S to be that which gives
a probability of 27172 to every inverse projection of an i-atom. g is well
defined by Lemma 3c. Notice that 1/2 probability is given to the subset
where z is true, and the same holds for the subset where x is not true. Next,
for every j € N and every z € S we define a discrete subjective probability
distribution #(z) € A(S) such that if z = ¢/(z) then #/(z)({z}) := 1 and if
z #y = ¢ (z) then /(2)({z}) := t/(2)({y}) := 1/2. Because the partitions
P are upper and lower semi-continuous, the functions # : S — A(S) are
continuous (with respect to the weak topology on A(S)).

We define our belief space to be (S = Ck(Tz),X,/L/},N = {1,2,3,4},
(t | j € N)) where X := {2, —~z} and ¢)(z) = z if z € z and ¥(z) = —z if
T ez

5 Main Results

Lemma 4:

(a) For j = 1,2 the functions ¢’ map inverse projections of half i-atoms
of Player j to inverse projections of half i-atoms of Player j, and do so
bijectively. The same holds for j = 3,4, with respect to inverse projections
of atoms.

(b) The functions ¢’ are measure preserving transformations with respect
to p.

Proof:

(a) For j = 3,4, the claim follows from the definition of ¢/, so we can
assume that j € {1,2} is fixed. Let z be any point in S and let F € F/,;
contain z. Let | be the first level such that —k;—f(v) € z for two distinct
v € (), with [ = oo if this never happens. Given that w = m;(z) and i > [
consider the -atom w’ # w such that —k;~f(w') € z. ¢ maps F N7, (w)
to F N (w') and vice versa. The bijection follows from ¢/ o ¢/ = id. If
[ <1, then ¢/ maps F'N 7 (w) to itself, also bijectively from ¢/ o ¢/ = id.
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(b) This follows from (a), (from Lemma 3) that p gives equal weight to
the inverse projections of all half i-atoms (repectively i-atoms), and that the
half atoms of either player also build a base for the open sets. 0

For every Player j we define a Borel field G7 on S in the following way: If
j =1,2 define a special collection of open sets: 07 := {F | F € FJ, k > 0};
and if j = 3,4, then define 07 to be {7, (m;(2))Un; ' (mi(¢’(2))) |z € S, i >
0}. For every j define G’ to be the Borel field generated by O7.

Lemma 5:

(a) If A is a non-empty open subset of S satisfying y € 4 = ¢/(y) € A
then A is the countable union of members of @7 and therefore is in G7.

(b) For every j the Borel field G’ is that generated by the continuous
function #/, meaning that G’ is the smallest sigma algebra for which the
function #/ is measurable.

Proof:

(a) Choose any y € A. Let v and w be any two atoms such that v € €,
is an -atom with the (base) open set 7;"!(v) containing y and contained in
A and w is a k-atom with the (base) open set 7, '(w) containing ¢’(y) and
contained in 4. Let [ equal max{i, k}. If j = 1,2 and y,¢’(y) € F € F/,,
we have that F' is a member of (07 containing y and contained in A. If
7 = 3,4 then 7, (m(y)) Um;  (m(# (y))) is a member of O containing y and
contained in 4. Notice that there are only countably many members in O7.

(b) First we must show that #/ is measurable with respect to G7. Because
the measurable sets of A(S) are the Borel sets of A(S), it suffices to show that
the inverse image of any open set of A(S) is in G?. Since # is continuous,
such an inverse image is an open set of S. Since #(y) = t/(¢/(y)) for all
y € S, such an open set satisfies the condition of (a).

Second, to show that there is no smaller sigma algebra , let us suppose
for the sake of contradiction that there exists a member G of G’ that is not
an inverse image of #/(A) for any measurable subset A C A(S). Since G is
a clopen subset of the Cantor set S, the function 14 is continuous. Consider
the open set of A(S) defined by 4 := {\ | AM(G) > 2/3}. #(2) is in A if and
only if z € (G, a contradiction which completes the proof. 0

For any partition P of a topological space such that all members of P
are Borel sets, let P, be the largest Borel field such that x € G € P, and
z,y € ' € P imply that y € G. With regard to our example, we have
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P ={B | BisBorel, y € B ¢/(y) € B} and G’ is a subset of P.

Lemma 6: For all j € N the function # : S — A(S) is a regular
conditional probability distribution induced by p and Py.

Proof:

First we must show for any j € N, fixed Borel set A and value r € [0, 1]
that the set {z | #/(2)(A) > r} is in PJ. We consider two cases: r < 1/2 and
r > 1/2. If r < 1/2 then the above set is A U ¢/ (A), which is in P! because
¢’ is a continuous and bijective involution. If r > 1/2 then the above set is
AN ¢/ (A), which is in P? for the same reasons.

Second, we will show for every B € PJ and Borel set 4 that p(BN A) =
[t (2)(A)du(z). Let B be any member of P/ and z any member of B.
t(z)(A) = 1if z,¢/(2) € A, (2)(A) = 0if z,¢7(2) € A, and otherwise
H(2)(A) = 1/2.

Let By be the subset of B where ¢/(z) = z,

B the subset where either z or ¢’(z) is in A but not both,

B, the subset where z # ¢/(z) and both z and ¢’(z) are in A, and

Bj the subset where z # ¢’(z) and neither z nor ¢’(z) is in A.

Since all sets are Borel, we can write [ #/(2)(A)du(z) as [, t/(2)(A)dp(z) +
iy 2 () A)d(=) + f, () (A=) + Sy, () (A=),

Case 0: Since #/(z) is the function 14 in By, [, /(2)(A)dp(z) = p(AN
B()).

Case 1: Notice that z € By if and only if ¢/(z) € By. Since #/(2)(A) +
(¢ (2))(A) = 1/2+1/2 = Lforall z € By, [ (7 (2)(A)+H (¢ (2))(A))du(z)
is equal to [p dju(z) = p(By), but also to 2 [, #/(2)(A)du(z) from the mea-
sure preserving property of Lemma 4b and the fact that #/(2)(A) is a constant
1/2 for all z € B;. Again from the measure preserving property we have that
(AN By) = (¢’ (AN By)). But ¢?(AN By) is exactly By\ 4, and therefore
2u(AN By) = u(By) and [ t/(2)(A)du(z) = (AN By), as desired.

Case 2: t/(z)(4) = #/(¢/(2))(4) = 1 for all = € B, and therefore
[p, ¥ (2)(A)dp(2) = [, du(z) = p(Bz) = p(AN By).

Case 3: If neither z € A nor ¢/(z) € A then #/(2)(A) = /(¢ (2))(4) =0
and therefore 0 = [y t/(2)(A)dp(z) = p(AN By). 0

Theorem :
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(a) For the above belief space (S = Ck(T3); X; i N =1{1,2,3,4}, (¥ |j €
N)) there is no common prior for any of the subsets (cells) that the players
know in common.

(b) The belief space is strongly non-redundant (and therefore maps bi-
jectively to a subspace of the canonical Mertens-Zamir space).

Proof:

(a) Every member of Aj_34P? contained in S = Ck(T3) is countable
and dense in the Cantor set S = Ck(T3), and therefore the same is true
for Ajo1224P?. Because all the ¢/ give 1/2 — 1/2 probability to any two
distinct points comprising a member of P’, any common prior probability
distribution on a C' € Aj=)234P7 contained in S must give equal probability
to all the points of C. This is impossible.

(b) Recall the definition of F from Section 2.1. We show that A; C F for
all 7. Since the inverse projections of the atoms form the base of open sets
of the Hausdorff topology on S, this would imply that F is the collection of
Borel subsets.

We proceed by induction on the depth 7. If 1=0 then the two distinct 0-
atoms correspond to the truth of falsity of z € X. We assume the claim for all
k less than or equal to i—1. Let w be any i-atom; we will prove that 7;"' (w) €
A; is also in F. From the induction hypothesis {z € S | #/(z)(m;;(u)) > 0}
and {z € S | #(z)(n}(u)) = 0} are in F for every u € Q,_;. Recall the sets
M?_(w) C €, from Property (iii). For both j = 1,2 consider the set 07, a
member of F (and open set of S), defined by

O i= i (m o w) 0 () {z€ 8P w) >0} N

ueM;! | (w)
N {ze 8| H(2)(r(u) =0}
weQ_\M; | (w)
The intersection O! N O%, a member of F, is exactly the set ;7 }(w) € A;. O

Corollary: There is a consistent belief subspace of a canonical Mertens-
Zamir space such that for every subset held in common knowledge there is
no common prior probability distribution on this set.

Remark: Although it is not necessary for this paper, one can prove for
all § € N that the Borel field G is equal to P}.
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6 Conclusion

There are manyv Mertens-Zamir belief subspaces that lack common priors;
Mertens and Zamir (1985) provide a finite example. A special property of
Mertens-Zamir spaces is the ability (of a player or an outside analyst) to
determine uniquely a common prior, should one exist, on the smallest sub-
space containing a point. Such an ability of a player is dependent on her
ability to consider the true state in the space to be possible, meaning that
the true state y is in the support of her subjective probability distribution
at 1. This is a strong condition, given the interactive construction of belief
spaces. Nevertheless, if we assume, for whatever reasons, that this condi-
tion is fullfilled (and it is fullfilled in the above example), the continuity
of subjective beliefs is very useful to the process of determining the unique
common prior, should one exist, when the players know in common a cell of
measure zero that is dense in the smallest containing subspace. Relatively
simple situations of player uncertainty that cannot be modeled through the
continuity of subjective belief could reveal a weakness of the Mertens-Zamir
construction.

When P is a partition with Borel members, recall the definition of P,
from the last section.

Claim: There is an example of a Polish space {2 with the following:
1) a Borel probability measure p on € that is both non-atomic and gives
positive measure to all non-empty open sets,
2) an upper and lower semi-continuous partition P of €2,
3) no regular conditional probability distribution defined on the Borel field
P. that is continuous with respect to the weak topology.

Example: Consider two coins; when flipped one lands heads with 2/3
probability, the other tails with 2/3 probability. Nature has chosen one of
the coins with even probability, and this choice is never changed over time.
There is only one player, and his task is to determine which coin was chosen
by nature. The player is allowed to perform an infinite sequence of flipping
experiments.

Let H stand for the coin that lands 2/3 heads, and h for an experi-
ment that results in heads. Let T and ¢ be defined likewise. Let 2 be
{H, T} x {h,t}>, where the first coordinate is the choice of nature. For
any © € §), let xy be the coordinate with H or T, and for ¢ > 1 let z; be
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the result of the ith experiment. The topology on §2 will be the product
topology. Let ;i be the induced probability distribution on €. After an infi-
nite sequence of flips, the player observes everything but the zero coordinate.
Define the partition P := {{H,T} x a | a € {h,t}*}. Consider the Borel
subset A = {&x € Q| liminf, , [t | 19?’ 4=M1 > 9/3} and the set of pairs
{(H,a),(T,a)} € P such that both points are in A. The only possibility
for a regular conditional probability distribution is to give probability one
to QF := {H} x {h,t}> at almost all such pairs of points in 4. (Consider
the formula [, p(QF | z)du(z) = p(A N QY), where pu(- | P.) is a regular
conditional probability distribution. p(ANQA) =1/2 and p(A) = 1/2 force
w(QF | ) = 1 for almost all z € A.) The same holds for the correspond-
ing set B defined by tails. Since A and B are both dense subsets of {2 and
Qf = {H} x {h,t}> and QT := {T'} x {h,t}* are separated clopen sub-
sets, there can be no continuous version of the regular conditional probability.
Choosing any open basis set of the form O = {(H,z) | 2; = a; Vi =1,2,...n}
for some finite sequence ag, ay, . . ., a,, we have u(0) > 0, with p(O) = %(%)"
if a; = t for all .

Acknowledgements: The group action on the Cantor set was shown to
me by Benjamin Weiss. The concluding example was shown to me by Ulrich
Krengel.
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