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Abstract

Let Xi ≥ 0 be independent, i = 1, . . . , n, with known distributions and let X∗
n =

max(X1, . . . , Xn). The classical ‘ratio prophet inequality’ compares the return to a
prophet, which is EX∗

n, to that of a mortal, who observes the Xis sequentially, and must
resort to a stopping rule t . The mortal’s return is V (X1, . . . , Xn) = max EXt , where
the maximum is over all stopping rules. The classical inequality states that EX∗

n <

2V (X1, . . . , Xn). In the present paper the mortal is given k ≥ 1 chances to choose. If he
uses stopping rules t1, . . . , tk his return is E(max(Xt1 , . . . , Xtk )). Let t (b) be the ‘simple
threshold stopping rule’ defined to be the smallest i for which Xi ≥ b, or n if there is
no such i. We show that there always exists a proper choice of k thresholds, such that
EX∗

n ≤ ((k+1)/k)E(max(Xt1 , . . . , Xtk )), where ti is of the form t (bi) with some added
randomization. Actually the thresholds can be taken to be the j/(k + 1) percentile points
of the distribution of X∗

n, j = 1, . . . , k, and hence only knowledge of the distribution of
X∗

n is needed.
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1. Introduction

‘Prophet inequalities’ compare, for any sequence of random variables (X1, . . . , Xn) belong-
ing to a given class, the value that a ‘prophet’ can achieve from the random variables with the
value an ordinary mortal, henceforth termed ‘statistician’, presented with the Xis sequentially,
can obtain from the same. Some details and a summary of known results are given below.

Throughout the present note the class of random variables to be considered is the class of
independent, non-negative random variables with finite expectations, where the sequence is
not identically zero. Denote this class by C. It is assumed until we state otherwise that the
distributions of the Xs are known. The objective, shared by the statistician and the prophet
alike, is to select as large an X value as possible. The statistician is restricted to the use of a
stopping rule. When faced with Xi (if he has not stopped before time i), his decision to stop or
continue can only depend on what he has seen up to and including time i, and possibly on some
external randomization. No recall is allowed. He must stop by time n. Let Tn denote the set of
all stopping rules for the sequence (X1, . . . , Xn) ∈ C. The optimal value to the statistician is
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defined by
V n(X1, . . . , Xn) = sup

t∈Tn

EXt .

In contrast to the statistician, the prophet has complete foresight of the entire sequence (or
complete recall) and can thus pick the largest X-value. His return will therefore be

E(max(X1, . . . , Xn)) = EX∗
n,

where we let X∗
n = max(X1, . . . , Xn) = X1 ∨ · · ·∨Xn. The first, and by now classical, (ratio)

prophet inequality states that for any n ≥ 2 and any (X1, . . . , Xn) in C

E(X∗
n) < 2V n(X1, . . . , Xn) (1.1)

and the constant 2 in (1.1) cannot be improved upon. See for example Krengel and Sucheston
(1978) and Hill and Kertz (1981). A similar result with weak inequality holds for an infinite
horizon, where it is assumed that E(sup Xi) < ∞.

In the present note we consider the situation where the statistician is given k ≥ 2 chances
to choose and gets the largest of the k X-values he has chosen. We consider only n > k, since
otherwise the problem is trivial. In this setting the value to the statistician is therefore

V n
k (X1, . . . , Xn) = sup

1≤t1≤t2≤···≤tk≤n

E(Xt1 ∨ · · · ∨ Xtk ), (1.2)

where the choice of Xtj should naturally take the values of Xt1 , . . . , Xtj−1 into account. In
principle, V n

k (X1, . . . , Xn) can be computed by a ‘multiple backward induction’ scheme,
although its actual evaluation is a formidable task, even for the rather simple case of two
choices and moderate n.

Stopping rules with multiple stopping options have been considered in the literature, mainly
in connection with ‘secretary problems’. In a general setup, and in relation to prophet inequali-
ties, multiple stopping options are discussed in Kennedy (1987). The objective considered there
is the maximization of the sum E(Xt1 + · · · + Xtk ), where the statistician is given k choices
and the maximization is over all stopping rules t1 < · · · < tk . Our objective is suitable for a
situation where the ‘statistician’ wants to buy a house out of n available prospective houses.
He inspects one house every day, and can put at most k houses ‘on hold’. He then selects the
better of the k houses that were reserved. Thus, the objective function of Kennedy (1987) is
different from our (1.2), and so are the results.

Consider the class of ‘simple threshold rules’ defined for any b > 0 as follows:

t (b) = inf{i : Xi ≥ b} ∧ n.

Thus t (b) picks the first X to equal or exceed the value b (if such an X exists). (The term
‘simple’ was introduced to distinguish this rule from threshold rules of the form t =
inf{i : Xi ≥ ai} ∧ n for a given sequence of constants (a1, . . . , an).) Samuel-Cahn (1984)
shows that, if the statistician resorts to simple threshold rules only, a statement similar to (1.1)
still holds, i.e. for any (X1, . . . , Xn) in C

EX∗
n ≤ 2 sup

b>0
EXt(b) (1.3)

and clearly here 2 is a best constant. In order to achieve (1.3) several choices of b are explicitly
exhibited in Samuel-Cahn (1984). One possible choice is to let b be a median, m, of the
distribution of X∗

n, and use t (m) or t̃ (m), where

t̃ (b) = inf{i : Xi > b} ∧ n.
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It is shown there that

EX∗
n ≤ 2 max{EXt(m), EXt̃(m)}.

In the present paper we generalize this result: we show that with k choices and all n > k,
there exist thresholds bk ≤ bk−1 ≤ · · · ≤ b1 such that

EX∗
n ≤ k + 1

k
E[Xt∗(bk) ∨ · · · ∨ Xt∗(b1)],

where t∗(b) is similar to t (b) with possibly some added randomization when X = b. Actually
we show more. If the exact 1/(k + 1), 2/(k + 1), . . . , k/(k + 1) percentile points of X∗

n exist,
and are denoted by qk, . . . , q1, so that P(X∗

n ≥ qi) = i/(k + 1), then

EX∗
n ≤ k + 1

k
E[Xt(qk) ∨ · · · ∨ Xt(q1)]. (1.4)

In the general setting, a result similar to (1.4) holds with some added randomization. Thus,
with just two choices, even using a good simple suboptimal rule, the prophet cannot receive
more than 1.5 times what the statistician can guarantee with such a rule, and with four choices
such a statistician is guaranteed at least 80% of the prophet’s value, no matter how large n.

For k = 1 the constant 2 = (k + 1)/k is the best possible, as seen from (1.1). For k ≥ 2 we
have good reasons to believe that (k+1)/k is greater than the ‘best’constant. The usefulness of
our result is that (i) the proofs are very simple, and that (ii) very simple, explicit rules are given
which achieve the inequality. Note also that, in order to apply the above rule, knowledge of the
distribution of X∗

n only is needed, and not full knowledge of the distribution of the individual
Xis. This has been termed ‘partial information’ by Wittman (1995).

In Section 2 we define randomized threshold rules and prove some Lemmas, which will be
used in Section 3, where we state and prove the main result.

2. Preliminaries

Let U be a uniformly U(0, 1) distributed random variable, independent of the Xs. For a
fixed threshold b > 0, define, for 0 ≤ α ≤ 1,

tα(b) = inf{i : Xi > b or (Xi = b, U ≤ α)} ∧ n. (2.1)

Clearly, if P(X∗
n = b) = 0 then (almost surely) tα(b) = t (b) = t̃ (b) for all α. Otherwise

t (b) = t1(b) and t̃ (b) = t0(b), while generally, for 0 < α < 1, tα(b) requires ‘external
randomization’.

Lemma 2.1. Let A = {(X∗
n > b) ∪ (X∗

n = b, U ≤ α)} and let Ā be the complementary event.
Then

EXtα(b) ≥ E[Xtα(b)1(A)] ≥ bP(A) + E(X∗
n − b)+P(Ā). (2.2)

Proof. The first inequality in (2.2) follows since the Xis are non-negative. Now

E[Xtα(b)1(A)] = bP(A) +
n∑

i=1

E[(Xi − b)+1(tα(b) = i)]. (2.3)
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To complete the proof it suffices to show that the second term in the right-hand side of (2.3)
exceeds or equals the corresponding term in (2.2). But

n∑
i=1

E[(Xi − b)+1(tα(b) = i)] =
n∑

i=1

E[(Xi − b)+1(tα(b) > i − 1)]

=
n∑

i=1

E(Xi − b)+P(tα(b) > i − 1)

≥ P(Ā)

n∑
i=1

E(Xi − b)+

≥ P(Ā)E(X∗
n − b)+. (2.4)

The first equality in (2.4) follows since (Xi − b)+1(tα(b) = i) = (Xi − b)+1(tα(b) > i − 1)

for all i, the second equality follows from independence, and the first inequality follows since,
for each i, one has P(tα(b) > i − 1) ≥ P(Ā).

Corollary 2.1. Let b∗ satisfy P(X∗
n < b∗) ≤ 1

2 and P(X∗
n > b∗) ≤ 1

2 and choose α so that
P{X∗

n > b∗} + αP(X∗
n = b∗) = 1

2 . Then EXtα(b∗)
≥ EX∗

n/2.

Proof. By (2.2), EXtα(b∗) ≥ [b∗+E(X∗
n−b∗)+]/2. Since for any b we have b+(X∗

n−b)+ ≥
X∗

n, the result follows by taking expectations.

We now generalize Lemma 2.1 to k simple threshold rules. Consider bk ≤ · · · ≤ b1 (not
necessarily all distinct), and corresponding uniformly U(0, 1) distributed random variables
U1, . . . , Uk . To avoid unnecessary complications, we assume that all bj s belong to the support
of X∗

n. When bj = bs we take Uj ≡ Us , but for distinct bj s we assume that the Uj s are
independent. Similar notation and assumptions will be used throughout.

Lemma 2.2. Let bk ≤ · · · ≤ b1, 0 ≤ α(j) ≤ 1 and, if bj = bs with j < s, assume
α(j) ≤ α(s). Let tα(j)(bj ) be defined through (2.1) with U = Uj and α = α(j). Let
Aj = {(X∗

n > bj ) ∪ (X∗
n = bj and Uj ≤ α(j))} and A0 = ∅. Then

E{[Xtα(k)(bk) ∨ · · · ∨ Xtα(1)(b1)]1(Ak)}

≥
k∑

j=1

bj P(Aj ∩ Āj−1) +
k∑

j=1

E[(X∗
n − bj )

+ | Āj−1]P(Āj ). (2.5)

Proof. Note that Ak ⊃ Ak−1 ⊃ · · · ⊃ A1. We prove (2.5) by induction on k. For k = 1 this
is Lemma 2.1. Suppose now that (2.5) holds for k − 1. Then

[Xtα(k)(bk) ∨ · · · ∨ Xtα(1)(b1)]1(Ak) ≥Xtα(k)(bk)1(Ak ∩ Āk−1)

+ [Xtα(k−1)(bk−1) ∨ · · · ∨ Xtα(1)(b1)]1(Ak−1).

By the induction hypothesis it suffices to prove that

E[Xtα(k)(bk)1(Ak ∩ Āk−1)] ≥ bkP(Ak ∩ Āk−1) + E[(X∗
n − bk)

+ | Āk−1]P(Āk). (2.6)
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Now,

E[Xtα(k)(bk)1(Ak ∩ Āk−1)] =bkP(Ak ∩ Āk−1)

+ E
n∑

i=1

{[Xi − bk]+1(tα(k)(bk) = i)1(Āk−1)}. (2.7)

The right most term in (2.7) can also be written as

P(Āk−1)

n∑
i=1

E[(Xi − bk)
+1(tα(k)(bk) = i) | Āk−1]. (2.8)

Now, by replacing expectation by conditional expectation in (2.4) (since the random variables
Xi and 1(tα(k)(bk) > i − 1) are conditionally independent given Āk−1), the evaluation of the
sum of the conditional expectations yields that the value of (2.8) is greater than or equal to

P(Āk−1)P(Āk | Āk−1)E[(X∗
n − bk)

+ | Āk−1] = P(Āk)E[(X∗
n − bk)

+ | Āk−1],
which is the value in the last term of (2.6). This, together with (2.8) and (2.7), yields (2.6).

Remark 2.1. Note that use of k ≥ 2 simple threshold rules will usually be far from optimal, for
two (related) reasons: (i) In an optimal rule one should never stop with a value not exceeding
the previously obtained (unless forced to stop at time n). Simple threshold rules do not adhere
to this principle. (ii) When using k ≥ 2 simple threshold rules one may pass up several stopping
options altogether. This happens when for the smallest i for which Xi ≥ bj the same Xi is also
greater than one or more bss, with bs ≥ bj .

3. Main result

Let bj and α(j) be such that, for j = 1, . . . , k,

P(X∗
n < bj ) ≤ k − j + 1

k + 1
, P(X∗

n > bj ) ≤ j

k + 1
,

P(X∗
n > bj ) + α(j)P(X∗

n = bj ) = j

k + 1
.

(3.1)

We call the constants thus determined the ‘exact j/(k + 1) percentiles’ of X∗
n.

Theorem 3.1. Let bj and α(j) satisfy (3.1). Then for all n > k

E[Xtα(1)(b1) ∨ · · · ∨ Xtα(k)(bk)] ≥ k

k + 1
EX∗

n. (3.2)

Proof. Let Z be any non-negative random variable, with finite positive expectation. Let
bk ≤ · · · ≤ b1 belong to the support of Z, and 0 ≤ α(j) ≤ 1. Let A0 = ∅ and Aj =
{(Z > bj )∪(Z = bj , Uj ≤ α(j))}, where for bj = bs with j < s we assume that α(j) ≤ α(s)

and Uj ≡ Us . Consider

k∑
j=1

bj P(Aj ∩ Āj−1) +
k∑

j=1

E[(Z − bj )
+ | Āj−1]P(Āj ). (3.3)
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For Z = X∗
n the value of (3.3) equals the right-hand side of (2.5). We show, by induction, that

if one chooses bk, . . . , b1 and α(k), . . . , α(1) to be the exact j/(k + 1) percentiles of Z, then
the value of (3.3) is greater than or equal to (k/(k + 1))EZ. The theorem clearly follows from
this and Lemma 2.2.

For k = 1 the proof is similar to that of Corollary 2.1. The value of (3.3) is simply

b1P(A1) + E(Z − b1)
+P(Ā1) = 1

2 (b1 + E(Z − b1)
+) ≥ 1

2 EZ,

where we use P(A1) = 1
2 .

Now suppose the assertion is true for any Z and k − 1. Let c > 0 be an arbitrary threshold,
let 0 ≤ α ≤ 1 and let

A = {(Z > c) ∪ (Z = c and U ≤ α)}, (3.4)

where we assume that P(Ā) > 0. Consider a new sample space, which is the previous sample
space conditional on Ā, and let Ẑ be a random variable distributed like Z conditionally on
Ā. Denote the probability measure on this sample space by P̂, that is, for any event B define
P̂(B) = P(B ∩ Ā)/P(Ā). The expectation Ê is defined similarly.

Now consider the k −1 exact j/k percentiles of Ẑ, and denote the corresponding thresholds
and α-values by b̂k−1, . . . , b̂1 and α̂(k − 1), . . . , α̂(1). Let

Bj = {(Ẑ > b̂j ) ∪ (Ẑ = b̂j , Ûj ≤ α̂(j))}, j = 1, . . . , k − 1

and B0 = ∅, where the definition of Ûj is self-explanatory, and the Ûj s are independent of U

in (3.4). Then the induction hypothesis about Ẑ implies

k−1∑
j=1

b̂j P̂(Bj ∩ B̄j−1) +
k−1∑
j=1

Ê[(Ẑ − b̂j )
+ | B̄j−1]P̂(B̄j ) ≥ k − 1

k
Ê(Ẑ)

= k − 1

k
E(Z | Ā). (3.5)

Let bj+1 = b̂j , Uj+1 = Ûj and α(j + 1) = α̂(j) for j = 1, . . . , k − 1, and define

Aj = {(Z > bj ) ∪ (Z = bj , Uj ≤ α(j))}, j = 2, . . . , k.

In terms of Aj and bj the left-hand side of (3.5) can be rewritten as

b2
P(A2 ∩ Ā)

P(Ā)
+

k∑
j=3

bj

P(Aj ∩ Āj−1 ∩ Ā)

P(Ā)
+ E[(Z − b2)

+ | Ā]P(Ā2 ∩ Ā)

P(Ā)

+
k∑

j=3

E[(Z − bj )
+ | Āj−1 ∩ Ā]P(Āj ∩ Ā)

P(Ā)
. (3.6)

Multiplying (3.6) by P(Ā) we can rewrite (3.5) as

b2P(A2 ∩ Ā) +
k∑

j=3

bj P(Aj ∩ Āj−1 ∩ Ā)

+ E[(Z − b2)
+ | Ā]P(Ā2 ∩ Ā)

+
k∑

j=3

E[(Z − bj )
+ | Āj−1 ∩ Ā]P(Āj ∩ Ā) ≥ k − 1

k
E(Z | Ā)P(Ā). (3.7)
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Now consider Z and the k thresholds b1 = c and b2, . . . , bk with corresponding α and
α(2), . . . , α(k). Note that b1 ≥ b2 ≥ · · · ≥ bk . If b1 > b2, then Āj ∩ Ā = Āj for
j = 2, . . . , k and, with Ā1 = Ā, (3.7) can be written as

k∑
j=2

bj P(Aj ∩ Āj−1) +
k∑

j=2

E[(Z − bj )
+ | Āj−1]P(Āj ) ≥ k − 1

k
E(Z | Ā)P(Ā). (3.8)

If c = b1 = b2 = · · · = bs for some s ≥ 2, then, for j = 2, . . . , s,

Āj ∩ Ā = {(Z < c) ∪ (Z = c, Uj > α(j), U > α)}.
Define α∗(j) by α∗(1) = α and 1 − α∗(j) = (1 − α(j))(1 − α), j = 2, . . . , s. Notice that
α∗(1) ≤ α∗(2) ≤ · · · ≤ α∗(s). Let

A∗
j =

{
{(Z > c) ∪ (Z = c, U ≤ α∗(j))}, j = 1, . . . , s,

Aj j = s + 1, . . . , k.
(3.9)

Then A∗
1 = A and (3.7) is equivalent to

k∑
j=2

bj P(A∗
j ∩ Ā∗

j−1) +
k∑

j=2

E[(Z − bj )
+ | Ā∗

j−1]P(Ā∗
j ) ≥ k − 1

k
E(Z | Ā)P(Ā), (3.10)

which coincides with (3.8) if we let Aj = A∗
j there. Now consider (3.3), with Aj there replaced

by A∗
j , for the thresholds and α-values as defined in (3.9). The first terms (j = 1) of both sums

in (3.3) yield
cP(A) + E(Z − c)+P(Ā) (3.11)

and the remaining terms are just the left-hand side of (3.10).
Let p = P(Ā). Then (3.11) can be written as

c(1 − p) + E(Z | A)(1 − p)p − c(1 − p)p = E(Z | A)P(A)p + c(1 − p)2. (3.12)

Note that c ≥ E(Z | Ā). Thus the sum of the right-hand sides of (3.10) and (3.12) is greater
than or equal to (

k − 1

k
+ (1 − p)2

p

)
E(Z | Ā)P(Ā) + pE(Z | A)P(A). (3.13)

If in (3.13) we solve for p the equation ((k − 1)/k + (1 −p)2/p) = p, and denote the solution
by p∗, then the value of (3.13) will be exactly p∗EZ. Now the solution is p∗ = k/(k + 1),
which shows that with this choice of thresholds the value of (3.3) is greater than or equal to
(k/(k + 1))EZ. Also (c, α) is the exact k/(k + 1) percentile of Z. To see that the exact j/k

percentiles for Ẑ, j = 1, . . . , k − 1 are actually the exact j/(k + 1) percentiles for Z, note that
(j/k)P(Ā) = (j/k)(k/(k + 1)) = j/(k + 1).

Remark 3.1. Let k = 2. When using the 1
3 and 2

3 percentile points, the value 2
3 EX∗

n on the
right-hand side of (3.2) cannot be improved upon, as seen by the following simple example,
where n = 3. Let

X1 ≡ a, X2 =
{

b w.p. 1
2 ,

0 w.p. 1
2 ,

X3 =
{

c w.p. 1
3 ,

0 w.p. 2
3 ,
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where a < b < c. Then X∗
3 takes values a, b, c each with probability 1

3 . The rule with the two
thresholds b and c has value (b + c)/3, thus

E[Xt(b) ∨ Xt(c)]
EX∗ = b + c

a + b + c

which tends to 2
3 as a, b → c. Note also that the inequality (2.5) becomes an equality for any

a < b < c in this example. Similar examples can be constructed for any k > 1.

Remark 3.2. For k = 2 the following example shows that EX∗
n < γ maxt1,t2 E(Xt1 ∨ Xt2)

cannot hold for γ < 5
4 , whether one considers threshold rules or all stopping rules. Let n = 3

and for 0 < β < 1
2 let

X1 ≡ β, X2 =
{

2β w.p. 1
2 ,

0 w.p. 1
2 ,

X3 =
{

1 w.p. β,

0 w.p. 1 − β.

Here EX∗
3 = β(5 − 3β)/2. For this example there are only three pairs of thresholds to be con-

sidered: (i) (β, 1); (ii) (β, 2β); (iii) (2β, 1). The corresponding values for the statistician are (i)
β(2−β), (ii) β(2−β/2) and (iii) β(2−β). No gain can be achieved through randomization, and
the pair (β, 2β) is optimal. The corresponding rule is optimal also among all two-choice rules.
The ratio between the value to the prophet and to the statistician is therefore (5 − 3β)/(4 − β).
Letting β tend to 0 yields the value 5

4 .
The next result is an immediate consequence of Theorem 3.1.

Corollary 3.1. For any k = 1, 2, . . . and any (X1, . . . , Xn) ∈ C

EX∗
n ≤ k + 1

k
sup

t1,...,tk∈T̃n

E[Xt1 ∨ · · · ∨ Xtk ].

For any infinite sequence (X1, X2, . . . ) of non-negative independent random variables with
E(sup Xi) < ∞

E(sup Xi) ≤ k + 1

k
lim

n→∞ sup
t1,...,tk∈T̃n

E[Xt1 ∨ · · · ∨ Xtk ],

where T̃n denotes the set of all threshold rules (including randomization).

Remark 3.3. In a similar manner to the proof in Rinott and Samuel-Cahn (1987), it can be
shown that Theorem 3.1 and Corollary 3.1 hold also if, instead of non-negative independent
Xis, we assume only that the Xis are non-negative and negatively lower orthant dependent in
sequence, which includes, for example, negatively associated random variables.
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